metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua-1κO,3κO-di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-dicyanido-2κ2N-bis­­{4,4′-di­bromo-2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}-1κ4O,N,N′,O′;3κ4O,N,N′,O′-1,3-dimanganese(III)-2-nickel(II)

aSchool of Chemistry and Life Sciences, Harbin University, Harbin 150080, People's Republic of China
*Correspondence e-mail: zhenhai_sun@sina.com

(Received 26 March 2008; accepted 30 April 2008; online 7 May 2008)

In the title compound, [Mn2Ni(C17H14Br2N2O2)2(CN)4(H2O)2] or [{Mn(C17H14Br2N2O2)(H2O)}2(μ-CN)2{Ni(CN)2}], each MnIII atom is chelated by a Schiff base ligand via two N and two O atoms and is additionally coordinated by a water mol­ecule to give a slightly distorted octa­hedral geometry. Two such MnIII ions are linked by a square-planar Ni(CN)4 unit, which lies on an inversion centre. A two-dimensional network is formed by O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For related literature, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1-69.]); Huang et al. (2002[Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.]); Bhadbhade & Srinivas (1993[Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122-6130.]); Bunce et al. (1998[Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179-4187.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]

  • Mr = 1184.95

  • Monoclinic, P 21 /n

  • a = 11.619 (2) Å

  • b = 13.514 (3) Å

  • c = 14.741 (3) Å

  • β = 112.04 (3)°

  • V = 2145.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.79 mm−1

  • T = 293 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.597, Tmax = 0.700

  • 13467 measured reflections

  • 3712 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.175

  • S = 1.00

  • 3712 reflections

  • 277 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1W⋯O1i 0.82 (7) 2.06 (7) 2.860 (7) 165 (10)
O3—H2W⋯N2ii 0.82 (4) 2.00 (2) 2.803 (8) 167 (8)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases as ligands have been studied for a long time due to their easy synthesis and versatile complexing abilities. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii et al., 1993; Huang et al., 2002). Considerable attention has been focused on the syntheses and structures of manganese(III) complexes. Manganese complexes with multidentate Schiff base ligands have aroused particular interest because this metal can exhibit several oxidation states and may provide the basis of models for active sites of biological systems. On the other hand, the main attention in optically active Schiff base complexes is concentrated on their catalytic abilities in stereoselective synthesis (Bhadbhade & Srinivas, 1993; Bunce et al., 1998). In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, each MnIII atom is chelated by a Schiff base ligand via two N and two O atoms and is additionally coordinated by a water molecule to give a slightly distorted octahedral geometry, in which the Schiff base lies in the equatorial plane. Two such MnIII ions are linked by a square-planar Ni(CN)4 unit, which lies on an inversion centre. The cyanido and aqua ligands lie in the axial coordination sites. The Mn—N and Mn—O axial bond lengths are much longer than the equatorial ones. A two-dimensional network is formed by O—H···O and O—H···N hydrogen bonds, as shown in Fig. 2.

Related literature top

For related literature, see: Garnovskii et al. (1993); Huang et al. (2002); Bhadbhade & Srinivas (1993); Bunce et al. (1998).

Experimental top

A mixture of manganese(III) acetate (1 mmol), N,N'-bis(2-hydroxy-5-bromobenzyl)-1,2-diaminopropane (1 mmol) and dipotassium tetracyanidonickelate(II) (1 mmol) in 20 ml me thanol was refluxed for two hours. The cooled solution was filtered and the filtrate was allowed to evaporate naturally at room temperature. Two day later, brown blocks of (I) were obtained with a yield of 16%. Anal. Calc. for C38H32Br4Mn2N8NiO6: C 38.48, H 2.70, N 9.45%; Found: C 38.42, H 2.64, N 9.38.

Refinement top

All C-bound H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). H atoms of H2O were located in a difference density map and were refined with a distance restraint O—H = 0.82 (1) Å and with Uiso(H) = 0.08 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. [Symmetry code for unlabelled atoms: -x, 2 - y, -z.]
[Figure 2] Fig. 2. Two-dimensional network formed by hydrogen bonds (dashed lines).
Diaqua-1κO,3κO-di-µ-cyanido-1:2κ2N:C;2:3κ2C:N-dicyanido-2κ2N- bis{4,4'-dibromo-2,2'-[propane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- 1κ4O,N,N',O';3κ4O,N,N',O'-1,3-dimanganese(III)-2-nickel(II) top
Crystal data top
[Mn2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]F(000) = 1164
Mr = 1184.95Dx = 1.834 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3712 reflections
a = 11.619 (2) Åθ = 3.0–25.1°
b = 13.514 (3) ŵ = 4.79 mm1
c = 14.741 (3) ÅT = 293 K
β = 112.04 (3)°Block, brown
V = 2145.5 (7) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3712 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1312
Tmin = 0.597, Tmax = 0.700k = 1615
13467 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
3712 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.81 e Å3
3 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Mn2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]V = 2145.5 (7) Å3
Mr = 1184.95Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.619 (2) ŵ = 4.79 mm1
b = 13.514 (3) ÅT = 293 K
c = 14.741 (3) Å0.12 × 0.10 × 0.08 mm
β = 112.04 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3712 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2268 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.700Rint = 0.085
13467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0653 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.81 e Å3
3712 reflectionsΔρmin = 0.69 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00001.00000.00000.0349 (4)
Mn10.29546 (11)0.95323 (8)0.36729 (8)0.0306 (4)
Br20.07326 (10)1.37224 (7)0.43825 (7)0.0583 (4)
Br40.75942 (10)0.61247 (7)0.30713 (8)0.0636 (4)
C10.1213 (8)0.9936 (5)0.1259 (5)0.036 (2)
C20.0637 (8)0.8806 (6)0.0275 (6)0.039 (2)
C30.2230 (8)1.1458 (5)0.4133 (5)0.035 (2)
C40.2475 (8)1.2492 (5)0.4247 (5)0.0338 (19)
H40.32411.27280.42790.041*
C50.1609 (9)1.3147 (6)0.4311 (6)0.043 (2)
H50.17811.38210.43590.052*
C60.0470 (9)1.2810 (6)0.4305 (6)0.043 (2)
C70.0187 (9)1.1818 (6)0.4197 (6)0.046 (2)
H70.05781.16010.41840.056*
C80.1033 (8)1.1135 (5)0.4107 (6)0.038 (2)
C90.0682 (8)1.0107 (6)0.3967 (6)0.037 (2)
H90.00760.99390.40030.045*
C100.0874 (10)0.8352 (6)0.3699 (9)0.070 (3)
H10A0.11480.80440.43400.084*
H10B0.00260.83350.34190.084*
C110.1358 (9)0.7815 (6)0.3084 (9)0.069 (3)
H110.08960.80870.24320.082*
C120.1046 (9)0.6736 (6)0.2966 (8)0.063 (3)
H12A0.15640.63860.35410.094*
H12B0.11850.64850.24060.094*
H12C0.01900.66450.28740.094*
C130.3444 (7)0.7543 (5)0.3197 (5)0.034 (2)
H130.32000.68880.30500.041*
C140.4691 (7)0.7788 (5)0.3300 (5)0.035 (2)
C150.5439 (8)0.7030 (6)0.3193 (5)0.039 (2)
H150.51420.63840.31170.047*
C160.6589 (9)0.7208 (7)0.3196 (6)0.050 (3)
C170.7050 (9)0.8158 (7)0.3290 (6)0.050 (2)
H170.78260.82790.32650.060*
C180.6340 (8)0.8932 (6)0.3422 (6)0.041 (2)
H180.66600.95710.35080.049*
C190.5152 (8)0.8769 (6)0.3428 (5)0.034 (2)
N10.1906 (6)0.9902 (4)0.2061 (4)0.0384 (18)
N20.0940 (7)0.8037 (5)0.0442 (5)0.048 (2)
N30.1310 (6)0.9397 (5)0.3797 (5)0.0411 (18)
N40.2646 (6)0.8130 (4)0.3287 (4)0.0316 (16)
O10.4523 (5)0.9530 (3)0.3561 (3)0.0328 (13)
O20.3094 (5)1.0873 (3)0.4049 (4)0.0327 (13)
O30.3787 (5)0.9022 (4)0.5249 (4)0.0368 (14)
H1W0.434 (5)0.942 (4)0.552 (7)0.080*
H2W0.398 (7)0.8437 (15)0.533 (7)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0383 (9)0.0266 (8)0.0214 (7)0.0002 (6)0.0099 (6)0.0005 (6)
Mn10.0332 (7)0.0231 (6)0.0221 (6)0.0005 (5)0.0051 (5)0.0009 (5)
Br20.0739 (8)0.0485 (6)0.0467 (6)0.0242 (5)0.0159 (5)0.0025 (4)
Br40.0553 (7)0.0701 (7)0.0566 (7)0.0211 (5)0.0109 (5)0.0140 (5)
C10.055 (6)0.013 (4)0.028 (4)0.001 (4)0.003 (4)0.000 (3)
C20.039 (5)0.035 (5)0.024 (4)0.003 (4)0.010 (4)0.000 (4)
C30.037 (5)0.029 (4)0.023 (4)0.006 (4)0.006 (4)0.003 (3)
C40.041 (5)0.032 (4)0.020 (4)0.008 (4)0.001 (4)0.001 (3)
C50.060 (6)0.030 (5)0.032 (5)0.010 (4)0.009 (4)0.004 (4)
C60.059 (6)0.026 (4)0.033 (5)0.006 (4)0.004 (4)0.001 (4)
C70.053 (6)0.057 (6)0.023 (4)0.008 (5)0.006 (4)0.007 (4)
C80.044 (5)0.031 (5)0.025 (4)0.009 (4)0.003 (4)0.000 (3)
C90.035 (5)0.037 (5)0.033 (4)0.000 (4)0.006 (4)0.003 (4)
C100.069 (8)0.043 (6)0.112 (10)0.017 (5)0.049 (7)0.028 (6)
C110.047 (7)0.040 (6)0.117 (10)0.004 (5)0.030 (6)0.027 (6)
C120.063 (7)0.041 (5)0.077 (7)0.007 (5)0.019 (6)0.010 (5)
C130.042 (5)0.019 (4)0.029 (4)0.001 (4)0.001 (4)0.002 (3)
C140.035 (5)0.035 (5)0.022 (4)0.008 (4)0.002 (4)0.007 (3)
C150.047 (6)0.038 (5)0.020 (4)0.003 (4)0.000 (4)0.001 (3)
C160.053 (6)0.053 (6)0.028 (5)0.020 (5)0.003 (4)0.008 (4)
C170.045 (6)0.055 (6)0.045 (6)0.001 (5)0.012 (5)0.010 (5)
C180.044 (6)0.046 (5)0.026 (4)0.002 (4)0.006 (4)0.004 (4)
C190.037 (5)0.042 (5)0.011 (4)0.009 (4)0.005 (3)0.003 (3)
N10.045 (4)0.027 (3)0.025 (4)0.006 (3)0.009 (3)0.000 (3)
N20.058 (5)0.030 (4)0.039 (4)0.010 (4)0.000 (4)0.004 (3)
N30.038 (4)0.033 (4)0.045 (4)0.002 (3)0.007 (3)0.010 (3)
N40.030 (4)0.028 (4)0.027 (4)0.000 (3)0.000 (3)0.001 (3)
O10.032 (3)0.030 (3)0.026 (3)0.003 (2)0.001 (2)0.001 (2)
O20.034 (3)0.029 (3)0.027 (3)0.001 (2)0.002 (2)0.001 (2)
O30.042 (4)0.029 (3)0.025 (3)0.003 (3)0.004 (3)0.003 (2)
Geometric parameters (Å, º) top
Ni1—C11.865 (8)C9—H90.930
Ni1—C1i1.865 (8)C10—C111.431 (13)
Ni1—C2i1.882 (9)C10—N31.489 (10)
Ni1—C21.882 (9)C10—H10A0.970
Mn1—O21.884 (5)C10—H10B0.970
Mn1—O11.890 (6)C11—N41.475 (11)
Mn1—N41.973 (6)C11—C121.497 (11)
Mn1—N31.995 (7)C11—H110.980
Mn1—O32.264 (5)C12—H12A0.960
Mn1—N12.282 (6)C12—H12B0.960
Br2—C61.899 (9)C12—H12C0.960
Br4—C161.925 (9)C13—N41.265 (9)
C1—N11.154 (9)C13—C141.438 (11)
C2—N21.153 (9)C13—H130.930
C3—O21.319 (9)C14—C151.389 (11)
C3—C41.423 (10)C14—C191.415 (10)
C3—C81.443 (12)C15—C161.356 (12)
C4—C51.370 (11)C15—H150.930
C4—H40.930C16—C171.378 (12)
C5—C61.397 (12)C17—C181.391 (12)
C5—H50.930C17—H170.930
C6—C71.375 (11)C18—C191.401 (12)
C7—C81.390 (11)C18—H180.930
C7—H70.930C19—O11.319 (9)
C8—C91.442 (10)O3—H1W0.82 (7)
C9—N31.286 (10)O3—H2W0.82 (4)
C1—Ni1—C1i180N3—C10—H10B109.7
C1—Ni1—C2i92.5 (3)H10A—C10—H10B108.2
C1i—Ni1—C2i87.5 (3)C10—C11—N4109.6 (8)
C1—Ni1—C287.5 (3)C10—C11—C12115.6 (9)
C1i—Ni1—C292.5 (3)N4—C11—C12119.2 (8)
C2i—Ni1—C2180C10—C11—H11103.4
O2—Mn1—O192.8 (2)N4—C11—H11103.4
O2—Mn1—N4174.4 (3)C12—C11—H11103.4
O1—Mn1—N492.9 (2)C11—C12—H12A109.5
O2—Mn1—N392.3 (2)C11—C12—H12B109.5
O1—Mn1—N3174.6 (2)H12A—C12—H12B109.5
N4—Mn1—N382.0 (3)C11—C12—H12C109.5
O2—Mn1—O392.0 (2)H12A—C12—H12C109.5
O1—Mn1—O392.0 (2)H12B—C12—H12C109.5
N4—Mn1—O388.0 (2)N4—C13—C14126.4 (7)
N3—Mn1—O386.2 (3)N4—C13—H13116.8
O2—Mn1—N192.8 (2)C14—C13—H13116.8
O1—Mn1—N193.7 (2)C15—C14—C19119.0 (8)
N4—Mn1—N186.7 (2)C15—C14—C13117.8 (7)
N3—Mn1—N187.7 (3)C19—C14—C13123.1 (7)
O3—Mn1—N1172.4 (2)C16—C15—C14121.7 (8)
N1—C1—Ni1175.8 (8)C16—C15—H15119.1
N2—C2—Ni1174.3 (8)C14—C15—H15119.1
O2—C3—C4118.2 (7)C15—C16—C17120.8 (9)
O2—C3—C8125.2 (7)C15—C16—Br4119.8 (7)
C4—C3—C8116.6 (7)C17—C16—Br4119.4 (8)
C5—C4—C3121.5 (8)C16—C17—C18119.0 (9)
C5—C4—H4119.2C16—C17—H17120.5
C3—C4—H4119.2C18—C17—H17120.5
C4—C5—C6120.5 (7)C17—C18—C19121.4 (8)
C4—C5—H5119.8C17—C18—H18119.3
C6—C5—H5119.8C19—C18—H18119.3
C7—C6—C5120.2 (8)O1—C19—C18118.7 (7)
C7—C6—Br2119.4 (7)O1—C19—C14123.2 (8)
C5—C6—Br2120.3 (6)C18—C19—C14118.1 (7)
C6—C7—C8120.8 (9)C1—N1—Mn1165.7 (7)
C6—C7—H7119.6C9—N3—C10121.9 (8)
C8—C7—H7119.6C9—N3—Mn1125.6 (6)
C7—C8—C9118.8 (8)C10—N3—Mn1112.4 (5)
C7—C8—C3120.4 (7)C13—N4—C11121.7 (6)
C9—C8—C3120.8 (7)C13—N4—Mn1124.9 (6)
N3—C9—C8126.6 (8)C11—N4—Mn1113.3 (5)
N3—C9—H9116.7C19—O1—Mn1128.4 (5)
C8—C9—H9116.7C3—O2—Mn1128.3 (5)
C11—C10—N3109.9 (8)Mn1—O3—H1W105 (7)
C11—C10—H10A109.7Mn1—O3—H2W116 (7)
N3—C10—H10A109.7H1W—O3—H2W116 (8)
C11—C10—H10B109.7
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O1ii0.82 (7)2.06 (7)2.860 (7)165 (10)
O3—H2W···N2iii0.82 (4)2.00 (2)2.803 (8)167 (8)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn2Ni(C17H14Br2N2O2)2(CN)4(H2O)2]
Mr1184.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.619 (2), 13.514 (3), 14.741 (3)
β (°) 112.04 (3)
V3)2145.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)4.79
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.597, 0.700
No. of measured, independent and
observed [I > 2σ(I)] reflections
13467, 3712, 2268
Rint0.085
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.175, 1.00
No. of reflections3712
No. of parameters277
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.69

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O1i0.82 (7)2.06 (7)2.860 (7)165 (10)
O3—H2W···N2ii0.82 (4)2.00 (2)2.803 (8)167 (8)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Harbin University for financial support.

References

First citationBhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122–6130.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179–4187.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationHuang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64–66.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds