metal-organic compounds
Di-μ-thiosemicarbazide-κ4S:S-bis[bis(thiosemicarbazide-κS)copper(I)] diiodide
aLiaocheng Vocational and Technical College, Liaocheng, Shandong 252000, People's Republic of China, bShandong Vocational Animal Science and Veterinary College, Weifang, Shandong 261000, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn
The title compound, [Cu2{SC(NH2)NHNH2}6]I2, was obtained by the reaction of CuI and thiosemicarbazide (TSCZ) in acetonitrile. Each CuI ion is coordinated by four S atoms of the TSCZ ligands, forming a tetrahedral geometry. Centrosymmetric dimers are formed by two coordination tetrahedra sharing a common edge, with a Cu⋯Cu distance of 2.8236 (14) Å. The I− ion does not have any direct interaction with the metal. The is stabilized by weak N—H⋯N, N—H⋯S and N—H⋯I hydrogen bonds, forming a three-dimensional network structure.
Related literature
For similar structures, see: Chattopadhyay et al. (1991); Burrows et al. (2004); Tong et al. (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808014001/cf2195sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808014001/cf2195Isup2.hkl
CuI (0.19 g 1 mmol) and thiosemicarbazide (0.18 g, 2 mmol) were refluxed in 10 ml acetonitrile for 24 h, and a colorless solution formed. After filtration, the solution was allowed to evaporate slowly, and crystals suitable for X-ray diffraction were obtained after several days.
All H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms. [Symmetry code for unlabeled atoms: 1 - x, y, 3/2 - z.] | |
Fig. 2. Three-dimensional network structure of the title complex. |
[Cu2(CH5N3S)6]I2 | F(000) = 1808 |
Mr = 927.72 | Dx = 2.049 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.437 (4) Å | Cell parameters from 4159 reflections |
b = 8.4174 (15) Å | θ = 2.6–27.8° |
c = 22.546 (4) Å | µ = 3.92 mm−1 |
β = 105.385 (5)° | T = 273 K |
V = 3007.6 (10) Å3 | Block, colorless |
Z = 4 | 0.45 × 0.37 × 0.23 mm |
Bruker SMART CCD diffractometer | 2636 independent reflections |
Radiation source: fine-focus sealed tube | 2135 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −19→19 |
Tmin = 0.272, Tmax = 0.466 | k = −10→9 |
7573 measured reflections | l = −26→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.059P)2 + 7.7455P] where P = (Fo2 + 2Fc2)/3 |
2636 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.87 e Å−3 |
0 restraints | Δρmin = −0.99 e Å−3 |
[Cu2(CH5N3S)6]I2 | V = 3007.6 (10) Å3 |
Mr = 927.72 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.437 (4) Å | µ = 3.92 mm−1 |
b = 8.4174 (15) Å | T = 273 K |
c = 22.546 (4) Å | 0.45 × 0.37 × 0.23 mm |
β = 105.385 (5)° |
Bruker SMART CCD diffractometer | 2636 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2135 reflections with I > 2σ(I) |
Tmin = 0.272, Tmax = 0.466 | Rint = 0.040 |
7573 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.87 e Å−3 |
2636 reflections | Δρmin = −0.99 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.46872 (4) | −0.07773 (6) | 0.68532 (3) | 0.04027 (19) | |
I1 | 0.65686 (2) | 0.58550 (4) | 0.582631 (19) | 0.05668 (17) | |
N1 | 0.5760 (3) | 0.0278 (5) | 0.5883 (2) | 0.0488 (11) | |
H1A | 0.6145 | 0.0354 | 0.5689 | 0.059* | |
H1B | 0.5809 | −0.0413 | 0.6171 | 0.059* | |
N2 | 0.5046 (3) | 0.2253 (5) | 0.5297 (2) | 0.0543 (12) | |
H2 | 0.4618 | 0.2879 | 0.5195 | 0.065* | |
N3 | 0.5685 (3) | 0.2350 (6) | 0.4990 (2) | 0.0617 (13) | |
H3A | 0.6114 | 0.1726 | 0.5091 | 0.074* | |
H3B | 0.5647 | 0.3034 | 0.4700 | 0.074* | |
N4 | 0.7280 (3) | 0.1713 (5) | 0.7543 (3) | 0.0783 (19) | |
H4A | 0.7449 | 0.2677 | 0.7531 | 0.094* | |
H4B | 0.7643 | 0.0957 | 0.7643 | 0.094* | |
N5 | 0.5934 (2) | 0.2573 (4) | 0.7257 (2) | 0.0407 (9) | |
H5 | 0.5402 | 0.2375 | 0.7164 | 0.049* | |
N6 | 0.6214 (3) | 0.4144 (4) | 0.7244 (2) | 0.0467 (11) | |
H6A | 0.6746 | 0.4347 | 0.7336 | 0.056* | |
H6B | 0.5854 | 0.4904 | 0.7144 | 0.056* | |
N7 | 0.2933 (3) | −0.2581 (5) | 0.5981 (2) | 0.0601 (14) | |
H7A | 0.2449 | −0.2781 | 0.5732 | 0.072* | |
H7B | 0.3049 | −0.1636 | 0.6124 | 0.072* | |
N8 | 0.3286 (3) | −0.5151 (5) | 0.5913 (2) | 0.0492 (11) | |
H8 | 0.3644 | −0.5916 | 0.6010 | 0.059* | |
N9 | 0.2482 (3) | −0.5449 (5) | 0.5508 (2) | 0.0555 (12) | |
H9A | 0.2120 | −0.4692 | 0.5409 | 0.067* | |
H9B | 0.2355 | −0.6387 | 0.5362 | 0.067* | |
S1 | 0.42975 (7) | 0.11539 (13) | 0.61021 (6) | 0.0390 (3) | |
S2 | 0.61502 (7) | −0.05460 (13) | 0.74208 (6) | 0.0344 (3) | |
S3 | 0.44805 (8) | −0.34566 (13) | 0.66223 (6) | 0.0423 (3) | |
C1 | 0.5100 (3) | 0.1217 (5) | 0.5738 (2) | 0.0361 (10) | |
C2 | 0.6478 (3) | 0.1399 (5) | 0.7409 (2) | 0.0347 (10) | |
C3 | 0.3498 (3) | −0.3726 (5) | 0.6145 (2) | 0.0360 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0445 (4) | 0.0355 (3) | 0.0419 (4) | −0.0033 (2) | 0.0134 (3) | 0.0014 (3) |
I1 | 0.0626 (3) | 0.0556 (3) | 0.0537 (3) | 0.01216 (16) | 0.0185 (2) | 0.01200 (17) |
N1 | 0.049 (3) | 0.056 (2) | 0.047 (3) | 0.011 (2) | 0.023 (2) | 0.011 (2) |
N2 | 0.065 (3) | 0.052 (3) | 0.049 (3) | 0.006 (2) | 0.020 (2) | 0.017 (2) |
N3 | 0.081 (3) | 0.063 (3) | 0.051 (3) | 0.006 (2) | 0.035 (3) | 0.013 (2) |
N4 | 0.032 (3) | 0.043 (3) | 0.143 (6) | −0.0066 (19) | −0.006 (3) | 0.028 (3) |
N5 | 0.030 (2) | 0.0341 (19) | 0.057 (3) | −0.0014 (16) | 0.0111 (18) | −0.0001 (19) |
N6 | 0.035 (2) | 0.032 (2) | 0.069 (3) | −0.0013 (15) | 0.006 (2) | 0.0072 (19) |
N7 | 0.044 (3) | 0.041 (2) | 0.084 (4) | 0.008 (2) | −0.004 (2) | −0.010 (2) |
N8 | 0.046 (2) | 0.035 (2) | 0.066 (3) | 0.0022 (18) | 0.013 (2) | −0.010 (2) |
N9 | 0.046 (3) | 0.045 (2) | 0.073 (4) | −0.0051 (19) | 0.010 (2) | −0.020 (2) |
S1 | 0.0362 (6) | 0.0352 (6) | 0.0458 (8) | 0.0042 (5) | 0.0110 (5) | 0.0067 (5) |
S2 | 0.0296 (6) | 0.0322 (5) | 0.0427 (7) | 0.0013 (4) | 0.0118 (5) | 0.0042 (5) |
S3 | 0.0418 (7) | 0.0307 (6) | 0.0511 (8) | 0.0054 (5) | 0.0064 (6) | −0.0008 (5) |
C1 | 0.044 (3) | 0.028 (2) | 0.034 (3) | −0.0051 (19) | 0.006 (2) | −0.001 (2) |
C2 | 0.031 (2) | 0.038 (2) | 0.034 (3) | −0.0014 (19) | 0.007 (2) | 0.009 (2) |
C3 | 0.040 (3) | 0.032 (2) | 0.041 (3) | −0.0030 (19) | 0.019 (2) | −0.002 (2) |
Cu1—S1 | 2.3118 (14) | N5—N6 | 1.404 (5) |
Cu1—S3 | 2.3192 (13) | N5—H5 | 0.860 |
Cu1—S2i | 2.4098 (13) | N6—H6A | 0.860 |
Cu1—S2 | 2.4136 (14) | N6—H6B | 0.860 |
Cu1—Cu1i | 2.8236 (14) | N7—C3 | 1.321 (6) |
N1—C1 | 1.312 (6) | N7—H7A | 0.860 |
N1—H1A | 0.860 | N7—H7B | 0.860 |
N1—H1B | 0.860 | N8—C3 | 1.318 (6) |
N2—C1 | 1.307 (6) | N8—N9 | 1.415 (6) |
N2—N3 | 1.405 (6) | N8—H8 | 0.860 |
N2—H2 | 0.860 | N9—H9A | 0.860 |
N3—H3A | 0.860 | N9—H9B | 0.860 |
N3—H3B | 0.860 | S1—C1 | 1.730 (5) |
N4—C2 | 1.300 (6) | S2—C2 | 1.726 (4) |
N4—H4A | 0.860 | S2—Cu1i | 2.4098 (13) |
N4—H4B | 0.860 | S3—C3 | 1.702 (5) |
N5—C2 | 1.315 (6) | ||
S1—Cu1—S3 | 121.59 (6) | N5—N6—H6B | 120.0 |
S1—Cu1—S2i | 110.09 (5) | H6A—N6—H6B | 120.0 |
S3—Cu1—S2i | 98.91 (5) | C3—N7—H7A | 120.0 |
S1—Cu1—S2 | 112.03 (5) | C3—N7—H7B | 120.0 |
S3—Cu1—S2 | 105.28 (5) | H7A—N7—H7B | 120.0 |
S2i—Cu1—S2 | 107.55 (4) | C3—N8—N9 | 121.4 (4) |
S1—Cu1—Cu1i | 135.30 (4) | C3—N8—H8 | 119.3 |
S3—Cu1—Cu1i | 102.91 (4) | N9—N8—H8 | 119.3 |
S2i—Cu1—Cu1i | 54.23 (4) | N8—N9—H9A | 120.0 |
S2—Cu1—Cu1i | 54.11 (4) | N8—N9—H9B | 120.0 |
C1—N1—H1A | 120.0 | H9A—N9—H9B | 120.0 |
C1—N1—H1B | 120.0 | C1—S1—Cu1 | 105.77 (16) |
H1A—N1—H1B | 120.0 | C2—S2—Cu1i | 108.92 (16) |
C1—N2—N3 | 120.4 (4) | C2—S2—Cu1 | 109.82 (16) |
C1—N2—H2 | 119.8 | Cu1i—S2—Cu1 | 71.66 (4) |
N3—N2—H2 | 119.8 | C3—S3—Cu1 | 109.23 (15) |
N2—N3—H3A | 120.0 | N2—C1—N1 | 118.4 (5) |
N2—N3—H3B | 120.0 | N2—C1—S1 | 118.4 (4) |
H3A—N3—H3B | 120.0 | N1—C1—S1 | 123.2 (4) |
C2—N4—H4A | 120.0 | N4—C2—N5 | 119.0 (4) |
C2—N4—H4B | 120.0 | N4—C2—S2 | 119.4 (4) |
H4A—N4—H4B | 120.0 | N5—C2—S2 | 121.6 (3) |
C2—N5—N6 | 120.6 (4) | N8—C3—N7 | 117.4 (5) |
C2—N5—H5 | 119.7 | N8—C3—S3 | 118.6 (4) |
N6—N5—H5 | 119.7 | N7—C3—S3 | 124.0 (4) |
N5—N6—H6A | 120.0 |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N9ii | 0.86 | 2.44 | 3.219 (6) | 152 |
N1—H1B···S2 | 0.86 | 2.73 | 3.426 (5) | 140 |
N2—H2···I1iii | 0.86 | 2.80 | 3.526 (5) | 143 |
N3—H3B···S3iv | 0.86 | 2.95 | 3.692 (5) | 145 |
N4—H4A···S2v | 0.86 | 2.72 | 3.446 (4) | 142 |
N4—H4B···N6vi | 0.86 | 2.38 | 3.225 (6) | 167 |
N5—H5···S1 | 0.86 | 2.79 | 3.424 (4) | 132 |
N6—H6A···N4v | 0.86 | 2.52 | 3.225 (6) | 139 |
N7—H7B···I1vii | 0.86 | 3.15 | 3.620 (4) | 117 |
N8—H8···S1viii | 0.86 | 2.68 | 3.499 (4) | 161 |
N9—H9B···I1ix | 0.86 | 2.98 | 3.608 (5) | 132 |
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+3/2, y+1/2, −z+3/2; (vi) −x+3/2, y−1/2, −z+3/2; (vii) x−1/2, y−1/2, z; (viii) x, y−1, z; (ix) x−1/2, y−3/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(CH5N3S)6]I2 |
Mr | 927.72 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 273 |
a, b, c (Å) | 16.437 (4), 8.4174 (15), 22.546 (4) |
β (°) | 105.385 (5) |
V (Å3) | 3007.6 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.92 |
Crystal size (mm) | 0.45 × 0.37 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.272, 0.466 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7573, 2636, 2135 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.106, 1.01 |
No. of reflections | 2636 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.99 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N9i | 0.86 | 2.44 | 3.219 (6) | 151.9 |
N1—H1B···S2 | 0.86 | 2.73 | 3.426 (5) | 139.6 |
N2—H2···I1ii | 0.86 | 2.80 | 3.526 (5) | 142.6 |
N3—H3B···S3iii | 0.86 | 2.95 | 3.692 (5) | 144.9 |
N4—H4A···S2iv | 0.86 | 2.72 | 3.446 (4) | 142.4 |
N4—H4B···N6v | 0.86 | 2.38 | 3.225 (6) | 167.0 |
N5—H5···S1 | 0.86 | 2.79 | 3.424 (4) | 131.9 |
N6—H6A···N4iv | 0.86 | 2.52 | 3.225 (6) | 139.2 |
N7—H7B···I1vi | 0.86 | 3.15 | 3.620 (4) | 117.0 |
N8—H8···S1vii | 0.86 | 2.68 | 3.499 (4) | 160.5 |
N9—H9B···I1viii | 0.86 | 2.98 | 3.608 (5) | 131.6 |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+3/2, y+1/2, −z+3/2; (v) −x+3/2, y−1/2, −z+3/2; (vi) x−1/2, y−1/2, z; (vii) x, y−1, z; (viii) x−1/2, y−3/2, z. |
Acknowledgements
We acknowledge the Natural Science Foundation of Liaocheng University (X051002) for support.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des. 4, 813–822. Web of Science CSD CrossRef CAS Google Scholar
Chattopadhyay, D., Majumdar, S. K., Lowe, P., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121–2124. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tong, Y.-X., Su, C.-Y., Zhang, Z.-F., Kang, B.-S., Yu, X.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 44–45. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In previous papers, thiosemicarbazide (TSCZ) has two coordination types; one is as a monodentate S-donor (Chattopadhyay et al., 1991; Tong et al., 2000), the other is as an S,N-chelating agent (Burrows et al., 2004). We report the synthesis and the structure of a TSCZ complex of cuprous iodide, (I), in which TSCZ acts as a monodentate S-donor. As shown in Fig. 1, each CuI atom is in a tetrahedral coordination environment. It is coordinated by two bridging TSCZ ligands and two terminal TSCZ ligands. The Cu—S distances are 2.3118 (14), 2.3192 (13), 2.4098 (13) and 2.4136 (14) Å, which are longer than 2.2266 (1) Å for [Cu(SC(NH2)NHNH2)Cl2] (Chattopadhyay et al., 1991). The bond lengths for S=C are 1.730 (5), 1.726 (4) and 1.702 (5) Å; the corresponding bond length in [Cu(SC(NH2)NHNH2)Cl2] is 1.717 (4)Å (Chattopadhyay et al., 1991).
In the crystal structure, hydrogen bonds are involved. Intramolecular N—H···S interactions appear to influence the conformation of the dimer, while intermolecular N—H···N, N—H···S and N—H···I interactions link the dimers and anions into a three-dimensional network structure (Fig. 2).