metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-thio­semicarbazide-κ4S:S-bis­­[bis­­(thio­semicarbazide-κS)copper(I)] diiodide

aLiaocheng Vocational and Technical College, Liaocheng, Shandong 252000, People's Republic of China, bShandong Vocational Animal Science and Veterinary College, Weifang, Shandong 261000, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 9 April 2008; accepted 10 May 2008; online 17 May 2008)

The title compound, [Cu2{SC(NH2)NHNH2}6]I2, was obtained by the reaction of CuI and thio­semicarbazide (TSCZ) in acetonitrile. Each CuI ion is coordinated by four S atoms of the TSCZ ligands, forming a tetra­hedral geometry. Centrosymmetric dimers are formed by two coordination tetra­hedra sharing a common edge, with a Cu⋯Cu distance of 2.8236 (14) Å. The I ion does not have any direct inter­action with the metal. The crystal structure is stabilized by weak N—H⋯N, N—H⋯S and N—H⋯I hydrogen bonds, forming a three-dimensional network structure.

Related literature

For similar structures, see: Chattopadhyay et al. (1991[Chattopadhyay, D., Majumdar, S. K., Lowe, P., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121-2124.]); Burrows et al. (2004[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des. 4, 813-822.]); Tong et al. (2000[Tong, Y.-X., Su, C.-Y., Zhang, Z.-F., Kang, B.-S., Yu, X.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 44-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CH5N3S)6]I2

  • Mr = 927.72

  • Monoclinic, C 2/c

  • a = 16.437 (4) Å

  • b = 8.4174 (15) Å

  • c = 22.546 (4) Å

  • β = 105.385 (5)°

  • V = 3007.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.92 mm−1

  • T = 273 (2) K

  • 0.45 × 0.37 × 0.23 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.272, Tmax = 0.466 (expected range = 0.237–0.406)

  • 7573 measured reflections

  • 2636 independent reflections

  • 2135 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.01

  • 2636 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N9i 0.86 2.44 3.219 (6) 152
N1—H1B⋯S2 0.86 2.73 3.426 (5) 140
N2—H2⋯I1ii 0.86 2.80 3.526 (5) 143
N3—H3B⋯S3iii 0.86 2.95 3.692 (5) 145
N4—H4A⋯S2iv 0.86 2.72 3.446 (4) 142
N4—H4B⋯N6v 0.86 2.38 3.225 (6) 167
N5—H5⋯S1 0.86 2.79 3.424 (4) 132
N6—H6A⋯N4iv 0.86 2.52 3.225 (6) 139
N7—H7B⋯I1vi 0.86 3.15 3.620 (4) 117
N8—H8⋯S1vii 0.86 2.68 3.499 (4) 161
N9—H9B⋯I1viii 0.86 2.98 3.608 (5) 132
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vii) x, y-1, z; (viii) [x-{\script{1\over 2}}, y-{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In previous papers, thiosemicarbazide (TSCZ) has two coordination types; one is as a monodentate S-donor (Chattopadhyay et al., 1991; Tong et al., 2000), the other is as an S,N-chelating agent (Burrows et al., 2004). We report the synthesis and the structure of a TSCZ complex of cuprous iodide, (I), in which TSCZ acts as a monodentate S-donor. As shown in Fig. 1, each CuI atom is in a tetrahedral coordination environment. It is coordinated by two bridging TSCZ ligands and two terminal TSCZ ligands. The Cu—S distances are 2.3118 (14), 2.3192 (13), 2.4098 (13) and 2.4136 (14) Å, which are longer than 2.2266 (1) Å for [Cu(SC(NH2)NHNH2)Cl2] (Chattopadhyay et al., 1991). The bond lengths for S=C are 1.730 (5), 1.726 (4) and 1.702 (5) Å; the corresponding bond length in [Cu(SC(NH2)NHNH2)Cl2] is 1.717 (4)Å (Chattopadhyay et al., 1991).

In the crystal structure, hydrogen bonds are involved. Intramolecular N—H···S interactions appear to influence the conformation of the dimer, while intermolecular N—H···N, N—H···S and N—H···I interactions link the dimers and anions into a three-dimensional network structure (Fig. 2).

Related literature top

For similar structures, see: Chattopadhyay et al. (1991); Burrows et al. (2004); Tong et al. (2000).

Experimental top

CuI (0.19 g 1 mmol) and thiosemicarbazide (0.18 g, 2 mmol) were refluxed in 10 ml acetonitrile for 24 h, and a colorless solution formed. After filtration, the solution was allowed to evaporate slowly, and crystals suitable for X-ray diffraction were obtained after several days.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms. [Symmetry code for unlabeled atoms: 1 - x, y, 3/2 - z.]
[Figure 2] Fig. 2. Three-dimensional network structure of the title complex.
Di-µ-thiosemicarbazide-κ4S:S-bis[bis(thiosemicarbazide-κS)copper(I)] diiodide top
Crystal data top
[Cu2(CH5N3S)6]I2F(000) = 1808
Mr = 927.72Dx = 2.049 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.437 (4) ÅCell parameters from 4159 reflections
b = 8.4174 (15) Åθ = 2.6–27.8°
c = 22.546 (4) ŵ = 3.92 mm1
β = 105.385 (5)°T = 273 K
V = 3007.6 (10) Å3Block, colorless
Z = 40.45 × 0.37 × 0.23 mm
Data collection top
Bruker SMART CCD
diffractometer
2636 independent reflections
Radiation source: fine-focus sealed tube2135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.272, Tmax = 0.466k = 109
7573 measured reflectionsl = 2614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.059P)2 + 7.7455P]
where P = (Fo2 + 2Fc2)/3
2636 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Cu2(CH5N3S)6]I2V = 3007.6 (10) Å3
Mr = 927.72Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.437 (4) ŵ = 3.92 mm1
b = 8.4174 (15) ÅT = 273 K
c = 22.546 (4) Å0.45 × 0.37 × 0.23 mm
β = 105.385 (5)°
Data collection top
Bruker SMART CCD
diffractometer
2636 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2135 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.466Rint = 0.040
7573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.01Δρmax = 0.87 e Å3
2636 reflectionsΔρmin = 0.99 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.46872 (4)0.07773 (6)0.68532 (3)0.04027 (19)
I10.65686 (2)0.58550 (4)0.582631 (19)0.05668 (17)
N10.5760 (3)0.0278 (5)0.5883 (2)0.0488 (11)
H1A0.61450.03540.56890.059*
H1B0.58090.04130.61710.059*
N20.5046 (3)0.2253 (5)0.5297 (2)0.0543 (12)
H20.46180.28790.51950.065*
N30.5685 (3)0.2350 (6)0.4990 (2)0.0617 (13)
H3A0.61140.17260.50910.074*
H3B0.56470.30340.47000.074*
N40.7280 (3)0.1713 (5)0.7543 (3)0.0783 (19)
H4A0.74490.26770.75310.094*
H4B0.76430.09570.76430.094*
N50.5934 (2)0.2573 (4)0.7257 (2)0.0407 (9)
H50.54020.23750.71640.049*
N60.6214 (3)0.4144 (4)0.7244 (2)0.0467 (11)
H6A0.67460.43470.73360.056*
H6B0.58540.49040.71440.056*
N70.2933 (3)0.2581 (5)0.5981 (2)0.0601 (14)
H7A0.24490.27810.57320.072*
H7B0.30490.16360.61240.072*
N80.3286 (3)0.5151 (5)0.5913 (2)0.0492 (11)
H80.36440.59160.60100.059*
N90.2482 (3)0.5449 (5)0.5508 (2)0.0555 (12)
H9A0.21200.46920.54090.067*
H9B0.23550.63870.53620.067*
S10.42975 (7)0.11539 (13)0.61021 (6)0.0390 (3)
S20.61502 (7)0.05460 (13)0.74208 (6)0.0344 (3)
S30.44805 (8)0.34566 (13)0.66223 (6)0.0423 (3)
C10.5100 (3)0.1217 (5)0.5738 (2)0.0361 (10)
C20.6478 (3)0.1399 (5)0.7409 (2)0.0347 (10)
C30.3498 (3)0.3726 (5)0.6145 (2)0.0360 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0445 (4)0.0355 (3)0.0419 (4)0.0033 (2)0.0134 (3)0.0014 (3)
I10.0626 (3)0.0556 (3)0.0537 (3)0.01216 (16)0.0185 (2)0.01200 (17)
N10.049 (3)0.056 (2)0.047 (3)0.011 (2)0.023 (2)0.011 (2)
N20.065 (3)0.052 (3)0.049 (3)0.006 (2)0.020 (2)0.017 (2)
N30.081 (3)0.063 (3)0.051 (3)0.006 (2)0.035 (3)0.013 (2)
N40.032 (3)0.043 (3)0.143 (6)0.0066 (19)0.006 (3)0.028 (3)
N50.030 (2)0.0341 (19)0.057 (3)0.0014 (16)0.0111 (18)0.0001 (19)
N60.035 (2)0.032 (2)0.069 (3)0.0013 (15)0.006 (2)0.0072 (19)
N70.044 (3)0.041 (2)0.084 (4)0.008 (2)0.004 (2)0.010 (2)
N80.046 (2)0.035 (2)0.066 (3)0.0022 (18)0.013 (2)0.010 (2)
N90.046 (3)0.045 (2)0.073 (4)0.0051 (19)0.010 (2)0.020 (2)
S10.0362 (6)0.0352 (6)0.0458 (8)0.0042 (5)0.0110 (5)0.0067 (5)
S20.0296 (6)0.0322 (5)0.0427 (7)0.0013 (4)0.0118 (5)0.0042 (5)
S30.0418 (7)0.0307 (6)0.0511 (8)0.0054 (5)0.0064 (6)0.0008 (5)
C10.044 (3)0.028 (2)0.034 (3)0.0051 (19)0.006 (2)0.001 (2)
C20.031 (2)0.038 (2)0.034 (3)0.0014 (19)0.007 (2)0.009 (2)
C30.040 (3)0.032 (2)0.041 (3)0.0030 (19)0.019 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu1—S12.3118 (14)N5—N61.404 (5)
Cu1—S32.3192 (13)N5—H50.860
Cu1—S2i2.4098 (13)N6—H6A0.860
Cu1—S22.4136 (14)N6—H6B0.860
Cu1—Cu1i2.8236 (14)N7—C31.321 (6)
N1—C11.312 (6)N7—H7A0.860
N1—H1A0.860N7—H7B0.860
N1—H1B0.860N8—C31.318 (6)
N2—C11.307 (6)N8—N91.415 (6)
N2—N31.405 (6)N8—H80.860
N2—H20.860N9—H9A0.860
N3—H3A0.860N9—H9B0.860
N3—H3B0.860S1—C11.730 (5)
N4—C21.300 (6)S2—C21.726 (4)
N4—H4A0.860S2—Cu1i2.4098 (13)
N4—H4B0.860S3—C31.702 (5)
N5—C21.315 (6)
S1—Cu1—S3121.59 (6)N5—N6—H6B120.0
S1—Cu1—S2i110.09 (5)H6A—N6—H6B120.0
S3—Cu1—S2i98.91 (5)C3—N7—H7A120.0
S1—Cu1—S2112.03 (5)C3—N7—H7B120.0
S3—Cu1—S2105.28 (5)H7A—N7—H7B120.0
S2i—Cu1—S2107.55 (4)C3—N8—N9121.4 (4)
S1—Cu1—Cu1i135.30 (4)C3—N8—H8119.3
S3—Cu1—Cu1i102.91 (4)N9—N8—H8119.3
S2i—Cu1—Cu1i54.23 (4)N8—N9—H9A120.0
S2—Cu1—Cu1i54.11 (4)N8—N9—H9B120.0
C1—N1—H1A120.0H9A—N9—H9B120.0
C1—N1—H1B120.0C1—S1—Cu1105.77 (16)
H1A—N1—H1B120.0C2—S2—Cu1i108.92 (16)
C1—N2—N3120.4 (4)C2—S2—Cu1109.82 (16)
C1—N2—H2119.8Cu1i—S2—Cu171.66 (4)
N3—N2—H2119.8C3—S3—Cu1109.23 (15)
N2—N3—H3A120.0N2—C1—N1118.4 (5)
N2—N3—H3B120.0N2—C1—S1118.4 (4)
H3A—N3—H3B120.0N1—C1—S1123.2 (4)
C2—N4—H4A120.0N4—C2—N5119.0 (4)
C2—N4—H4B120.0N4—C2—S2119.4 (4)
H4A—N4—H4B120.0N5—C2—S2121.6 (3)
C2—N5—N6120.6 (4)N8—C3—N7117.4 (5)
C2—N5—H5119.7N8—C3—S3118.6 (4)
N6—N5—H5119.7N7—C3—S3124.0 (4)
N5—N6—H6A120.0
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N9ii0.862.443.219 (6)152
N1—H1B···S20.862.733.426 (5)140
N2—H2···I1iii0.862.803.526 (5)143
N3—H3B···S3iv0.862.953.692 (5)145
N4—H4A···S2v0.862.723.446 (4)142
N4—H4B···N6vi0.862.383.225 (6)167
N5—H5···S10.862.793.424 (4)132
N6—H6A···N4v0.862.523.225 (6)139
N7—H7B···I1vii0.863.153.620 (4)117
N8—H8···S1viii0.862.683.499 (4)161
N9—H9B···I1ix0.862.983.608 (5)132
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+3/2, y+1/2, z+3/2; (vi) x+3/2, y1/2, z+3/2; (vii) x1/2, y1/2, z; (viii) x, y1, z; (ix) x1/2, y3/2, z.

Experimental details

Crystal data
Chemical formula[Cu2(CH5N3S)6]I2
Mr927.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)16.437 (4), 8.4174 (15), 22.546 (4)
β (°) 105.385 (5)
V3)3007.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.92
Crystal size (mm)0.45 × 0.37 × 0.23
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.272, 0.466
No. of measured, independent and
observed [I > 2σ(I)] reflections
7573, 2636, 2135
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.01
No. of reflections2636
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.99

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N9i0.862.443.219 (6)151.9
N1—H1B···S20.862.733.426 (5)139.6
N2—H2···I1ii0.862.803.526 (5)142.6
N3—H3B···S3iii0.862.953.692 (5)144.9
N4—H4A···S2iv0.862.723.446 (4)142.4
N4—H4B···N6v0.862.383.225 (6)167.0
N5—H5···S10.862.793.424 (4)131.9
N6—H6A···N4iv0.862.523.225 (6)139.2
N7—H7B···I1vi0.863.153.620 (4)117.0
N8—H8···S1vii0.862.683.499 (4)160.5
N9—H9B···I1viii0.862.983.608 (5)131.6
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+3/2, y+1/2, z+3/2; (v) x+3/2, y1/2, z+3/2; (vi) x1/2, y1/2, z; (vii) x, y1, z; (viii) x1/2, y3/2, z.
 

Acknowledgements

We acknowledge the Natural Science Foundation of Liaocheng University (X051002) for support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des. 4, 813–822.  Web of Science CSD CrossRef CAS Google Scholar
First citationChattopadhyay, D., Majumdar, S. K., Lowe, P., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121–2124.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, Y.-X., Su, C.-Y., Zhang, Z.-F., Kang, B.-S., Yu, X.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 44–45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds