organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Methyl 3-(4-eth­oxy­anilino)but-2-enoate

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
*Correspondence e-mail: zhangliping76518@163.com.cn

(Received 3 March 2008; accepted 2 April 2008; online 10 May 2008)

The title compound, C13H17NO3, was synthesized from methyl 3-oxobutanoate and 4-ethoxy­benzenamine using a catalytic amount of InBr3 under solvent-free conditions. The 3-amino­but-2-enoic acid methyl ester group is planar and forms a dihedral angle of 83.4 (1)° with the benzene ring. The eth­oxy group is slightly twisted away from the benzene ring [dihedral angle = 13.8 (1)°]. An intra­molecular N—H⋯O hydrogen bond generating an S(6) ring is observed. Mol­ecules are linked into a chain along the b axis by inter­molecular C—H⋯O hydrogen bonding.

Related literature

For general background on β-enamino esters, see: Bartoli et al. (1994[Bartoli, G., Cimarelli, C., Marcantoni, E., Palmieri, G. & Petrini, M. (1994). J. Org. Chem. 59, 5328-5335.]); Cimarelli & Palmieri (1996[Cimarelli, C. & Palmieri, G. (1996). J. Org. Chem. 61, 5557-5563.]); Cimarelli et al. (1994[Cimarelli, C., Palmieri, G. & Bartoli, G. (1994). Tetrahedron Asymmetry, 5, 1455-1458.]); Elassar & El-Khair (2003[Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.]); Greenhill (1977[Greenhill, J. V. (1977). Chem. Soc. Rev. 6, 277-294.]); Lubell et al. (1991[Lubell, W. D., Kitamura, M. & Noyori, R. (1991). Tetrahedron Asymmetry, 2, 543-554.]); Michael et al. (1999[Michael, J. P., Koning, C. B. De., Gravestock, D. & Hosken, G. D. (1999). Pure Appl. Chem. 71, 979-988.]); Paola et al. (2000[Paola, G., Valerio, B. & Valeria, F. (2000). J. Am. Chem. Soc. 122, 10405-10417.]); Rybarczyk-Pirek & Grabowski (2002[Rybarczyk-Pirek, A. J. & Grabowski, S. (2002). J. Phys. Chem. A, 106, 11956-11962.]); Yunus et al. (2008[Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO3

  • Mr = 235.28

  • Monoclinic, P 21 /n

  • a = 12.421 (2) Å

  • b = 6.3372 (13) Å

  • c = 16.569 (3) Å

  • β = 96.519 (3)°

  • V = 1295.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.30 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.990

  • 6917 measured reflections

  • 2628 independent reflections

  • 1629 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.136

  • S = 1.00

  • 2628 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.08 2.741 (2) 133
C6—H6⋯O2i 0.93 2.57 3.362 (3) 143
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Enamino esters are useful precursors for the preparation of biologically active compounds such as β-enamino acids, γ-enamino alcohols or β-enamino esters (Lubell et al., 1991; Bartoli et al., 1994; Cimarelli et al., 1994; Cimarelli & Palmieri, 1996). Therefore, many synthetic methods have been developed for the preparation of these compounds (Greenhill, 1977; Elassar et al., 2003; Michael et al., 1999). As part of our program on developing new environmental friendly methodologies for the preparation of β-enamino compounds, we have synthesized the title compound (Fig.1). We report here the crystal structure of it.

In the title molecule, the 3-amino-but-2-enoic acid methyl ester group is planar (r.m.s. deviation 0.045 Å) and it forms a dihedral angle of 83.4 (1)° with the benzene ring. The ethoxy group is slightly twisted away from the benzene ring [dihedral angle 13.8 (1)°]. An intramolecular N1—H1···O2 hydrogen bond generating an S(6) ring is observed. The N1—C9 bond length [1.341 (2) Å] is shorter than the N1—C1 [1.435 (2) Å] bond length, indicating electron delocalization.

The molecules are linked into a chain along the b axis by intermolecular C—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background on β-enamino esters, see: Bartoli et al. (1994); Cimarelli & Palmieri (1996); Cimarelli et al. (1994); Elassar & El-Khair (2003); Greenhill (1977); Lubell et al. (1991); Michael et al. (1999); Paola et al. (2000); Rybarczyk-Pirek & Grabowski (2002); Yunus et al. (2008).

Experimental top

A mixture of the methyl-3-oxobutanoate (5 mmol), 4-ethoxybenzenamine (5 mmol) and InBr3 (0.05 mmol) was stirred at room temperature for 1 h. After completion of the reaction, the reaction mixture was diluted with H2O (10 ml) and extracted with EtOAc (210 ml). The combined organic layers were dried, concentrated, purified by column chromatography on SiO2 with ethyl acetate-cyclohexane (2:8). Single crystals suitable for X-ray diffraction study were obtained from EtOAc-cyclohexane (1:10 v/v) by slow evaporation at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C,N). Each methyl group was allowed to rotate freely about its C—C bond.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
(Z)-Methyl 3-(4-ethoxyanilino)but-2-enoate top
Crystal data top
C13H17NO3F(000) = 504
Mr = 235.28Dx = 1.206 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2289 reflections
a = 12.421 (2) Åθ = 2.5–24.9°
b = 6.3372 (13) ŵ = 0.09 mm1
c = 16.569 (3) ÅT = 294 K
β = 96.519 (3)°Block, yellow
V = 1295.7 (4) Å30.30 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2628 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1115
Tmin = 0.942, Tmax = 0.990k = 76
6917 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.1223P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2628 reflectionsΔρmax = 0.13 e Å3
158 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.106 (7)
Crystal data top
C13H17NO3V = 1295.7 (4) Å3
Mr = 235.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.421 (2) ŵ = 0.09 mm1
b = 6.3372 (13) ÅT = 294 K
c = 16.569 (3) Å0.30 × 0.26 × 0.20 mm
β = 96.519 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2628 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1629 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.990Rint = 0.031
6917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.13 e Å3
2628 reflectionsΔρmin = 0.11 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11751 (9)1.2475 (2)1.03170 (8)0.0714 (4)
O20.55147 (10)0.4131 (2)0.90568 (7)0.0697 (4)
O30.60606 (12)0.2866 (2)0.79053 (8)0.0872 (5)
N10.39962 (11)0.7279 (2)0.88382 (9)0.0654 (4)
H10.44030.65280.91810.078*
C10.32646 (13)0.8715 (3)0.91658 (9)0.0578 (4)
C20.21953 (14)0.8158 (3)0.92064 (10)0.0660 (5)
H20.19340.68910.89790.079*
C30.15124 (13)0.9455 (3)0.95793 (11)0.0642 (5)
H30.07940.90670.96000.077*
C40.18978 (13)1.1339 (3)0.99243 (10)0.0562 (4)
C50.29584 (13)1.1948 (3)0.98654 (11)0.0621 (5)
H50.32161.32321.00790.074*
C60.36297 (13)1.0624 (3)0.94847 (10)0.0622 (5)
H60.43411.10320.94440.075*
C70.15753 (16)1.4153 (3)1.08352 (12)0.0747 (6)
H7A0.19151.52121.05260.090*
H7B0.21131.36241.12570.090*
C80.06476 (18)1.5100 (4)1.12071 (12)0.0860 (6)
H8A0.01291.56541.07870.129*
H8B0.09081.62181.15690.129*
H8C0.03091.40361.15050.129*
C90.41069 (14)0.6995 (3)0.80498 (10)0.0606 (5)
C100.34385 (18)0.8388 (4)0.74539 (12)0.0856 (6)
H10A0.26870.82500.75300.128*
H10B0.35420.79760.69110.128*
H10C0.36600.98300.75410.128*
C110.48003 (16)0.5549 (3)0.77912 (11)0.0682 (5)
H110.48470.54500.72360.082*
C120.54568 (14)0.4182 (3)0.83178 (11)0.0603 (5)
C130.66598 (19)0.1247 (4)0.83608 (13)0.0913 (7)
H13A0.70340.18420.88470.137*
H13B0.71760.06410.80380.137*
H13C0.61710.01700.85030.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0558 (7)0.0803 (9)0.0782 (8)0.0017 (6)0.0075 (6)0.0156 (7)
O20.0708 (8)0.0769 (9)0.0602 (8)0.0030 (6)0.0030 (6)0.0031 (6)
O30.1112 (11)0.0823 (10)0.0680 (8)0.0315 (8)0.0100 (7)0.0054 (7)
N10.0600 (9)0.0757 (10)0.0604 (9)0.0114 (7)0.0069 (7)0.0021 (7)
C10.0526 (10)0.0670 (11)0.0537 (9)0.0002 (8)0.0050 (7)0.0037 (8)
C20.0572 (11)0.0703 (12)0.0701 (11)0.0124 (9)0.0062 (8)0.0107 (9)
C30.0465 (9)0.0752 (13)0.0709 (11)0.0097 (8)0.0067 (8)0.0097 (9)
C40.0497 (9)0.0632 (10)0.0546 (9)0.0017 (8)0.0015 (7)0.0024 (8)
C50.0540 (10)0.0603 (11)0.0710 (11)0.0080 (8)0.0030 (8)0.0018 (9)
C60.0481 (10)0.0686 (12)0.0698 (11)0.0075 (8)0.0063 (8)0.0057 (9)
C70.0787 (13)0.0724 (13)0.0724 (12)0.0010 (10)0.0071 (9)0.0102 (10)
C80.0949 (15)0.0886 (15)0.0745 (12)0.0188 (12)0.0097 (11)0.0090 (11)
C90.0589 (10)0.0621 (11)0.0613 (10)0.0050 (8)0.0087 (8)0.0037 (8)
C100.0966 (15)0.0921 (15)0.0697 (12)0.0227 (12)0.0170 (11)0.0152 (11)
C110.0787 (13)0.0715 (12)0.0552 (10)0.0040 (10)0.0118 (9)0.0015 (9)
C120.0607 (11)0.0566 (10)0.0642 (11)0.0066 (8)0.0088 (8)0.0060 (9)
C130.1021 (16)0.0811 (15)0.0877 (15)0.0275 (12)0.0022 (12)0.0071 (12)
Geometric parameters (Å, º) top
O1—C41.371 (2)C6—H60.93
O1—C71.420 (2)C7—C81.493 (3)
O2—C121.2187 (19)C7—H7A0.97
O3—C121.357 (2)C7—H7B0.97
O3—C131.431 (2)C8—H8A0.96
N1—C91.341 (2)C8—H8B0.96
N1—C11.435 (2)C8—H8C0.96
N1—H10.86C9—C111.360 (3)
C1—C61.376 (2)C9—C101.503 (3)
C1—C21.383 (2)C10—H10A0.96
C2—C31.377 (3)C10—H10B0.96
C2—H20.93C10—H10C0.96
C3—C41.385 (2)C11—C121.420 (3)
C3—H30.93C11—H110.93
C4—C51.387 (2)C13—H13A0.96
C5—C61.384 (2)C13—H13B0.96
C5—H50.93C13—H13C0.96
C4—O1—C7118.48 (14)H7A—C7—H7B108.4
C12—O3—C13117.32 (15)C7—C8—H8A109.5
C9—N1—C1126.37 (15)C7—C8—H8B109.5
C9—N1—H1116.8H8A—C8—H8B109.5
C1—N1—H1116.8C7—C8—H8C109.5
C6—C1—C2118.81 (16)H8A—C8—H8C109.5
C6—C1—N1120.47 (15)H8B—C8—H8C109.5
C2—C1—N1120.63 (16)N1—C9—C11122.43 (16)
C3—C2—C1120.90 (17)N1—C9—C10116.80 (16)
C3—C2—H2119.6C11—C9—C10120.76 (16)
C1—C2—H2119.6C9—C10—H10A109.5
C2—C3—C4119.86 (16)C9—C10—H10B109.5
C2—C3—H3120.1H10A—C10—H10B109.5
C4—C3—H3120.1C9—C10—H10C109.5
O1—C4—C3115.74 (15)H10A—C10—H10C109.5
O1—C4—C5124.43 (16)H10B—C10—H10C109.5
C3—C4—C5119.83 (16)C9—C11—C12123.90 (16)
C6—C5—C4119.30 (17)C9—C11—H11118.0
C6—C5—H5120.4C12—C11—H11118.0
C4—C5—H5120.4O2—C12—O3121.13 (16)
C1—C6—C5121.23 (16)O2—C12—C11126.71 (16)
C1—C6—H6119.4O3—C12—C11112.16 (16)
C5—C6—H6119.4O3—C13—H13A109.5
O1—C7—C8108.47 (16)O3—C13—H13B109.5
O1—C7—H7A110.0H13A—C13—H13B109.5
C8—C7—H7A110.0O3—C13—H13C109.5
O1—C7—H7B110.0H13A—C13—H13C109.5
C8—C7—H7B110.0H13B—C13—H13C109.5
C9—N1—C1—C6100.4 (2)N1—C1—C6—C5174.42 (15)
C9—N1—C1—C283.0 (2)C4—C5—C6—C10.1 (3)
C6—C1—C2—C31.9 (3)C4—O1—C7—C8178.42 (16)
N1—C1—C2—C3174.69 (16)C1—N1—C9—C11177.96 (17)
C1—C2—C3—C40.4 (3)C1—N1—C9—C103.2 (3)
C7—O1—C4—C3165.99 (15)N1—C9—C11—C121.1 (3)
C7—O1—C4—C513.3 (2)C10—C9—C11—C12179.97 (18)
C2—C3—C4—O1176.87 (16)C13—O3—C12—O27.7 (3)
C2—C3—C4—C52.5 (3)C13—O3—C12—C11172.85 (18)
O1—C4—C5—C6177.09 (16)C9—C11—C12—O21.7 (3)
C3—C4—C5—C62.2 (2)C9—C11—C12—O3178.90 (18)
C2—C1—C6—C52.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.082.741 (2)133
C6—H6···O2i0.932.573.362 (3)143
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H17NO3
Mr235.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)12.421 (2), 6.3372 (13), 16.569 (3)
β (°) 96.519 (3)
V3)1295.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6917, 2628, 1629
Rint0.031
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.136, 1.00
No. of reflections2628
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.082.741 (2)133
C6—H6···O2i0.932.573.362 (3)143
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Southern Yangtze University.

References

First citationBartoli, G., Cimarelli, C., Marcantoni, E., Palmieri, G. & Petrini, M. (1994). J. Org. Chem. 59, 5328–5335.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimarelli, C. & Palmieri, G. (1996). J. Org. Chem. 61, 5557–5563.  CrossRef CAS Web of Science Google Scholar
First citationCimarelli, C., Palmieri, G. & Bartoli, G. (1994). Tetrahedron Asymmetry, 5, 1455–1458.  CrossRef CAS Web of Science Google Scholar
First citationElassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.  Web of Science CrossRef CAS Google Scholar
First citationGreenhill, J. V. (1977). Chem. Soc. Rev. 6, 277–294.  CrossRef CAS Web of Science Google Scholar
First citationLubell, W. D., Kitamura, M. & Noyori, R. (1991). Tetrahedron Asymmetry, 2, 543–554.  CrossRef CAS Web of Science Google Scholar
First citationMichael, J. P., Koning, C. B. De., Gravestock, D. & Hosken, G. D. (1999). Pure Appl. Chem. 71, 979–988.  Web of Science CrossRef CAS Google Scholar
First citationPaola, G., Valerio, B. & Valeria, F. (2000). J. Am. Chem. Soc. 122, 10405–10417.  Google Scholar
First citationRybarczyk-Pirek, A. J. & Grabowski, S. (2002). J. Phys. Chem. A, 106, 11956–11962.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds