organic compounds
(Z)-Methyl 3-(4-ethoxyanilino)but-2-enoate
aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
*Correspondence e-mail: zhangliping76518@163.com.cn
The title compound, C13H17NO3, was synthesized from methyl 3-oxobutanoate and 4-ethoxybenzenamine using a catalytic amount of InBr3 under solvent-free conditions. The 3-aminobut-2-enoic acid methyl ester group is planar and forms a dihedral angle of 83.4 (1)° with the benzene ring. The ethoxy group is slightly twisted away from the benzene ring [dihedral angle = 13.8 (1)°]. An intramolecular N—H⋯O hydrogen bond generating an S(6) ring is observed. Molecules are linked into a chain along the b axis by intermolecular C—H⋯O hydrogen bonding.
Related literature
For general background on β-enamino see: Bartoli et al. (1994); Cimarelli & Palmieri (1996); Cimarelli et al. (1994); Elassar & El-Khair (2003); Greenhill (1977); Lubell et al. (1991); Michael et al. (1999); Paola et al. (2000); Rybarczyk-Pirek & Grabowski (2002); Yunus et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680800891X/ci2569sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680800891X/ci2569Isup2.hkl
A mixture of the methyl-3-oxobutanoate (5 mmol), 4-ethoxybenzenamine (5 mmol) and InBr3 (0.05 mmol) was stirred at room temperature for 1 h. After completion of the reaction, the reaction mixture was diluted with H2O (10 ml) and extracted with EtOAc (210 ml). The combined organic layers were dried, concentrated, purified by
on SiO2 with ethyl acetate-cyclohexane (2:8). Single crystals suitable for X-ray diffraction study were obtained from EtOAc-cyclohexane (1:10 v/v) by slow evaporation at room temperature.H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C,N). Each methyl group was allowed to rotate freely about its C—C bond.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H17NO3 | F(000) = 504 |
Mr = 235.28 | Dx = 1.206 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2289 reflections |
a = 12.421 (2) Å | θ = 2.5–24.9° |
b = 6.3372 (13) Å | µ = 0.09 mm−1 |
c = 16.569 (3) Å | T = 294 K |
β = 96.519 (3)° | Block, yellow |
V = 1295.7 (4) Å3 | 0.30 × 0.26 × 0.20 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2628 independent reflections |
Radiation source: fine-focus sealed tube | 1629 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and ω scans | θmax = 26.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→15 |
Tmin = 0.942, Tmax = 0.990 | k = −7→6 |
6917 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.1223P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
2628 reflections | Δρmax = 0.13 e Å−3 |
158 parameters | Δρmin = −0.11 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.106 (7) |
C13H17NO3 | V = 1295.7 (4) Å3 |
Mr = 235.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.421 (2) Å | µ = 0.09 mm−1 |
b = 6.3372 (13) Å | T = 294 K |
c = 16.569 (3) Å | 0.30 × 0.26 × 0.20 mm |
β = 96.519 (3)° |
Bruker SMART CCD area-detector diffractometer | 2628 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1629 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.990 | Rint = 0.031 |
6917 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.13 e Å−3 |
2628 reflections | Δρmin = −0.11 e Å−3 |
158 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.11751 (9) | 1.2475 (2) | 1.03170 (8) | 0.0714 (4) | |
O2 | 0.55147 (10) | 0.4131 (2) | 0.90568 (7) | 0.0697 (4) | |
O3 | 0.60606 (12) | 0.2866 (2) | 0.79053 (8) | 0.0872 (5) | |
N1 | 0.39962 (11) | 0.7279 (2) | 0.88382 (9) | 0.0654 (4) | |
H1 | 0.4403 | 0.6528 | 0.9181 | 0.078* | |
C1 | 0.32646 (13) | 0.8715 (3) | 0.91658 (9) | 0.0578 (4) | |
C2 | 0.21953 (14) | 0.8158 (3) | 0.92064 (10) | 0.0660 (5) | |
H2 | 0.1934 | 0.6891 | 0.8979 | 0.079* | |
C3 | 0.15124 (13) | 0.9455 (3) | 0.95793 (11) | 0.0642 (5) | |
H3 | 0.0794 | 0.9067 | 0.9600 | 0.077* | |
C4 | 0.18978 (13) | 1.1339 (3) | 0.99243 (10) | 0.0562 (4) | |
C5 | 0.29584 (13) | 1.1948 (3) | 0.98654 (11) | 0.0621 (5) | |
H5 | 0.3216 | 1.3232 | 1.0079 | 0.074* | |
C6 | 0.36297 (13) | 1.0624 (3) | 0.94847 (10) | 0.0622 (5) | |
H6 | 0.4341 | 1.1032 | 0.9444 | 0.075* | |
C7 | 0.15753 (16) | 1.4153 (3) | 1.08352 (12) | 0.0747 (6) | |
H7A | 0.1915 | 1.5212 | 1.0526 | 0.090* | |
H7B | 0.2113 | 1.3624 | 1.1257 | 0.090* | |
C8 | 0.06476 (18) | 1.5100 (4) | 1.12071 (12) | 0.0860 (6) | |
H8A | 0.0129 | 1.5654 | 1.0787 | 0.129* | |
H8B | 0.0908 | 1.6218 | 1.1569 | 0.129* | |
H8C | 0.0309 | 1.4036 | 1.1505 | 0.129* | |
C9 | 0.41069 (14) | 0.6995 (3) | 0.80498 (10) | 0.0606 (5) | |
C10 | 0.34385 (18) | 0.8388 (4) | 0.74539 (12) | 0.0856 (6) | |
H10A | 0.2687 | 0.8250 | 0.7530 | 0.128* | |
H10B | 0.3542 | 0.7976 | 0.6911 | 0.128* | |
H10C | 0.3660 | 0.9830 | 0.7541 | 0.128* | |
C11 | 0.48003 (16) | 0.5549 (3) | 0.77912 (11) | 0.0682 (5) | |
H11 | 0.4847 | 0.5450 | 0.7236 | 0.082* | |
C12 | 0.54568 (14) | 0.4182 (3) | 0.83178 (11) | 0.0603 (5) | |
C13 | 0.66598 (19) | 0.1247 (4) | 0.83608 (13) | 0.0913 (7) | |
H13A | 0.7034 | 0.1842 | 0.8847 | 0.137* | |
H13B | 0.7176 | 0.0641 | 0.8038 | 0.137* | |
H13C | 0.6171 | 0.0170 | 0.8503 | 0.137* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0558 (7) | 0.0803 (9) | 0.0782 (8) | 0.0017 (6) | 0.0075 (6) | −0.0156 (7) |
O2 | 0.0708 (8) | 0.0769 (9) | 0.0602 (8) | 0.0030 (6) | 0.0030 (6) | −0.0031 (6) |
O3 | 0.1112 (11) | 0.0823 (10) | 0.0680 (8) | 0.0315 (8) | 0.0100 (7) | −0.0054 (7) |
N1 | 0.0600 (9) | 0.0757 (10) | 0.0604 (9) | 0.0114 (7) | 0.0069 (7) | 0.0021 (7) |
C1 | 0.0526 (10) | 0.0670 (11) | 0.0537 (9) | −0.0002 (8) | 0.0050 (7) | 0.0037 (8) |
C2 | 0.0572 (11) | 0.0703 (12) | 0.0701 (11) | −0.0124 (9) | 0.0062 (8) | −0.0107 (9) |
C3 | 0.0465 (9) | 0.0752 (13) | 0.0709 (11) | −0.0097 (8) | 0.0067 (8) | −0.0097 (9) |
C4 | 0.0497 (9) | 0.0632 (10) | 0.0546 (9) | 0.0017 (8) | 0.0015 (7) | 0.0024 (8) |
C5 | 0.0540 (10) | 0.0603 (11) | 0.0710 (11) | −0.0080 (8) | 0.0030 (8) | −0.0018 (9) |
C6 | 0.0481 (10) | 0.0686 (12) | 0.0698 (11) | −0.0075 (8) | 0.0063 (8) | 0.0057 (9) |
C7 | 0.0787 (13) | 0.0724 (13) | 0.0724 (12) | 0.0010 (10) | 0.0071 (9) | −0.0102 (10) |
C8 | 0.0949 (15) | 0.0886 (15) | 0.0745 (12) | 0.0188 (12) | 0.0097 (11) | −0.0090 (11) |
C9 | 0.0589 (10) | 0.0621 (11) | 0.0613 (10) | −0.0050 (8) | 0.0087 (8) | 0.0037 (8) |
C10 | 0.0966 (15) | 0.0921 (15) | 0.0697 (12) | 0.0227 (12) | 0.0170 (11) | 0.0152 (11) |
C11 | 0.0787 (13) | 0.0715 (12) | 0.0552 (10) | 0.0040 (10) | 0.0118 (9) | 0.0015 (9) |
C12 | 0.0607 (11) | 0.0566 (10) | 0.0642 (11) | −0.0066 (8) | 0.0088 (8) | −0.0060 (9) |
C13 | 0.1021 (16) | 0.0811 (15) | 0.0877 (15) | 0.0275 (12) | −0.0022 (12) | −0.0071 (12) |
O1—C4 | 1.371 (2) | C6—H6 | 0.93 |
O1—C7 | 1.420 (2) | C7—C8 | 1.493 (3) |
O2—C12 | 1.2187 (19) | C7—H7A | 0.97 |
O3—C12 | 1.357 (2) | C7—H7B | 0.97 |
O3—C13 | 1.431 (2) | C8—H8A | 0.96 |
N1—C9 | 1.341 (2) | C8—H8B | 0.96 |
N1—C1 | 1.435 (2) | C8—H8C | 0.96 |
N1—H1 | 0.86 | C9—C11 | 1.360 (3) |
C1—C6 | 1.376 (2) | C9—C10 | 1.503 (3) |
C1—C2 | 1.383 (2) | C10—H10A | 0.96 |
C2—C3 | 1.377 (3) | C10—H10B | 0.96 |
C2—H2 | 0.93 | C10—H10C | 0.96 |
C3—C4 | 1.385 (2) | C11—C12 | 1.420 (3) |
C3—H3 | 0.93 | C11—H11 | 0.93 |
C4—C5 | 1.387 (2) | C13—H13A | 0.96 |
C5—C6 | 1.384 (2) | C13—H13B | 0.96 |
C5—H5 | 0.93 | C13—H13C | 0.96 |
C4—O1—C7 | 118.48 (14) | H7A—C7—H7B | 108.4 |
C12—O3—C13 | 117.32 (15) | C7—C8—H8A | 109.5 |
C9—N1—C1 | 126.37 (15) | C7—C8—H8B | 109.5 |
C9—N1—H1 | 116.8 | H8A—C8—H8B | 109.5 |
C1—N1—H1 | 116.8 | C7—C8—H8C | 109.5 |
C6—C1—C2 | 118.81 (16) | H8A—C8—H8C | 109.5 |
C6—C1—N1 | 120.47 (15) | H8B—C8—H8C | 109.5 |
C2—C1—N1 | 120.63 (16) | N1—C9—C11 | 122.43 (16) |
C3—C2—C1 | 120.90 (17) | N1—C9—C10 | 116.80 (16) |
C3—C2—H2 | 119.6 | C11—C9—C10 | 120.76 (16) |
C1—C2—H2 | 119.6 | C9—C10—H10A | 109.5 |
C2—C3—C4 | 119.86 (16) | C9—C10—H10B | 109.5 |
C2—C3—H3 | 120.1 | H10A—C10—H10B | 109.5 |
C4—C3—H3 | 120.1 | C9—C10—H10C | 109.5 |
O1—C4—C3 | 115.74 (15) | H10A—C10—H10C | 109.5 |
O1—C4—C5 | 124.43 (16) | H10B—C10—H10C | 109.5 |
C3—C4—C5 | 119.83 (16) | C9—C11—C12 | 123.90 (16) |
C6—C5—C4 | 119.30 (17) | C9—C11—H11 | 118.0 |
C6—C5—H5 | 120.4 | C12—C11—H11 | 118.0 |
C4—C5—H5 | 120.4 | O2—C12—O3 | 121.13 (16) |
C1—C6—C5 | 121.23 (16) | O2—C12—C11 | 126.71 (16) |
C1—C6—H6 | 119.4 | O3—C12—C11 | 112.16 (16) |
C5—C6—H6 | 119.4 | O3—C13—H13A | 109.5 |
O1—C7—C8 | 108.47 (16) | O3—C13—H13B | 109.5 |
O1—C7—H7A | 110.0 | H13A—C13—H13B | 109.5 |
C8—C7—H7A | 110.0 | O3—C13—H13C | 109.5 |
O1—C7—H7B | 110.0 | H13A—C13—H13C | 109.5 |
C8—C7—H7B | 110.0 | H13B—C13—H13C | 109.5 |
C9—N1—C1—C6 | −100.4 (2) | N1—C1—C6—C5 | −174.42 (15) |
C9—N1—C1—C2 | 83.0 (2) | C4—C5—C6—C1 | −0.1 (3) |
C6—C1—C2—C3 | −1.9 (3) | C4—O1—C7—C8 | −178.42 (16) |
N1—C1—C2—C3 | 174.69 (16) | C1—N1—C9—C11 | −177.96 (17) |
C1—C2—C3—C4 | −0.4 (3) | C1—N1—C9—C10 | 3.2 (3) |
C7—O1—C4—C3 | 165.99 (15) | N1—C9—C11—C12 | 1.1 (3) |
C7—O1—C4—C5 | −13.3 (2) | C10—C9—C11—C12 | 179.97 (18) |
C2—C3—C4—O1 | −176.87 (16) | C13—O3—C12—O2 | 7.7 (3) |
C2—C3—C4—C5 | 2.5 (3) | C13—O3—C12—C11 | −172.85 (18) |
O1—C4—C5—C6 | 177.09 (16) | C9—C11—C12—O2 | −1.7 (3) |
C3—C4—C5—C6 | −2.2 (2) | C9—C11—C12—O3 | 178.90 (18) |
C2—C1—C6—C5 | 2.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.08 | 2.741 (2) | 133 |
C6—H6···O2i | 0.93 | 2.57 | 3.362 (3) | 143 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C13H17NO3 |
Mr | 235.28 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 12.421 (2), 6.3372 (13), 16.569 (3) |
β (°) | 96.519 (3) |
V (Å3) | 1295.7 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.26 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.942, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6917, 2628, 1629 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.136, 1.00 |
No. of reflections | 2628 |
No. of parameters | 158 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.11 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.08 | 2.741 (2) | 133 |
C6—H6···O2i | 0.93 | 2.57 | 3.362 (3) | 143 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The authors acknowledge financial support from the Southern Yangtze University.
References
Bartoli, G., Cimarelli, C., Marcantoni, E., Palmieri, G. & Petrini, M. (1994). J. Org. Chem. 59, 5328–5335. CrossRef CAS Web of Science Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin,USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cimarelli, C. & Palmieri, G. (1996). J. Org. Chem. 61, 5557–5563. CrossRef CAS Web of Science Google Scholar
Cimarelli, C., Palmieri, G. & Bartoli, G. (1994). Tetrahedron Asymmetry, 5, 1455–1458. CrossRef CAS Web of Science Google Scholar
Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480. Web of Science CrossRef CAS Google Scholar
Greenhill, J. V. (1977). Chem. Soc. Rev. 6, 277–294. CrossRef CAS Web of Science Google Scholar
Lubell, W. D., Kitamura, M. & Noyori, R. (1991). Tetrahedron Asymmetry, 2, 543–554. CrossRef CAS Web of Science Google Scholar
Michael, J. P., Koning, C. B. De., Gravestock, D. & Hosken, G. D. (1999). Pure Appl. Chem. 71, 979–988. Web of Science CrossRef CAS Google Scholar
Paola, G., Valerio, B. & Valeria, F. (2000). J. Am. Chem. Soc. 122, 10405–10417. Google Scholar
Rybarczyk-Pirek, A. J. & Grabowski, S. (2002). J. Phys. Chem. A, 106, 11956–11962. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
β-Enamino esters are useful precursors for the preparation of biologically active compounds such as β-enamino acids, γ-enamino alcohols or β-enamino esters (Lubell et al., 1991; Bartoli et al., 1994; Cimarelli et al., 1994; Cimarelli & Palmieri, 1996). Therefore, many synthetic methods have been developed for the preparation of these compounds (Greenhill, 1977; Elassar et al., 2003; Michael et al., 1999). As part of our program on developing new environmental friendly methodologies for the preparation of β-enamino compounds, we have synthesized the title compound (Fig.1). We report here the crystal structure of it.
In the title molecule, the 3-amino-but-2-enoic acid methyl ester group is planar (r.m.s. deviation 0.045 Å) and it forms a dihedral angle of 83.4 (1)° with the benzene ring. The ethoxy group is slightly twisted away from the benzene ring [dihedral angle 13.8 (1)°]. An intramolecular N1—H1···O2 hydrogen bond generating an S(6) ring is observed. The N1—C9 bond length [1.341 (2) Å] is shorter than the N1—C1 [1.435 (2) Å] bond length, indicating electron delocalization.
The molecules are linked into a chain along the b axis by intermolecular C—H···O hydrogen bonds (Fig. 2).