organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Bis(1-benzo­thio­phen-2-yl)-2,3-di­hydro­thieno[3,4-b][1,4]dioxine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 1 April 2008; accepted 28 April 2008; online 10 May 2008)

In the title compound, C22H14O2S3, the dioxane ring is disordered over two sites [site occupancies = 0.623 (3) and 0.377 (3)]; both components adopt half-chair conformations. The two benzothio­phene ring systems are asymmetrically twisted away from the attached thio­phene ring [dihedral angles = 20.57 (3) and 6.70 (3)°] and are oriented at an angle of 26.83 (3)°. No significant hydrogen bonding or ππ inter­actions are observed in the crystal structure.

Related literature

For related literature, see: Cohen et al. (1977[Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1322-1334.]); Csaszar & Morvay (1983[Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.]); Dzhurayev et al. (1992[Dzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Farm. Zh. 26, 73-75.]); EI-Maghraby et al. (1984[EI-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327-336.]); Gewald et al. (1996[Gewald, K., Schinke, E. & Botcher, H. (1996). Chem. Ber. 99, 99-100.]); Lakshmi et al. (1985[Lakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci. 47, 202-204.]); Pellis & West (1968[Pellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320-324. London: Butterworth & Co. Ltd.]). For the synthesis, see: Amaladass et al. (2007[Amaladass, P., Clement, J. A. & Mohanakrishnan, A. K. (2007). Tetrahedron, 63, 10363-1067.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14O2S3

  • Mr = 406.51

  • Monoclinic, P 21 /c

  • a = 16.1602 (5) Å

  • b = 8.3524 (3) Å

  • c = 14.1814 (4) Å

  • β = 107.428 (2)°

  • V = 1826.28 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 (2) K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: none

  • 26571 measured reflections

  • 7059 independent reflections

  • 4551 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.142

  • S = 0.99

  • 7059 reflections

  • 251 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Sulfur containing Schiff bases (Pellis & West, 1968; Cohen et al., 1977; Csaszar & Morvay,1983; Lakshmi et al., 1985) and their thiophen derivatives (EI-Maghraby et al., 1984; Dzhurayev et al., 1992) possess pharmacological activities such as anti-bacterial, anti-cancer, anti-inflammatory and anti-toxic properties (Gewald et al., 1996). Benzo[b]thiophene analogs have been shown to possess interesting estrogenic and antiestrogenic effects. We report here the crystal structure of the title compound.

The C1—C8/S3 and C15—C22/S2 benzothiophene ring systems are essentially planar and are oriented at angles of 20.57 (3)° and 6.70 (3)°, respectively, with respect to the thiophene ring. The dihedral angle between the two benzothiophene ring systems is 26.83 (3)°. Both the major and minor conformers of the disordered dioxane ring adopt half-chair conformations. The crystal packing is stabilized by van der Waals forces.

Related literature top

For related literature, see: Cohen et al. (1977); Csaszar & Morvay (1983); Dzhurayev et al. (1992); EI-Maghraby et al. (1984); Gewald et al. (1996); Lakshmi et al. (1985); Pellis & West (1968). For the synthesis, see: Amaladass et al. (2007).

Experimental top

The title compound was prepared according to the procedure reported by Amaladass et al. (2007). Single crystals suitable for X-ray analysis were obtained by slow evaporation method.

Refinement top

The methylene C atoms of the dioxane ring are disordered over two positions (C11A/C11B and C12A/C12B) with refined occupancies of 0.623 (3) and 0.377 (3). The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same Uij parameters were used for atoms C11A and C11B, and C12A and C12B. H atoms were positioned geometrically (C—H = 0.93 Å or 0.97 Å) and were treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.
5,7-Bis(1-benzothiophen-2-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxine top
Crystal data top
C22H14O2S3F(000) = 840
Mr = 406.51Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4583 reflections
a = 16.1602 (5) Åθ = 2.8–33.8°
b = 8.3524 (3) ŵ = 0.42 mm1
c = 14.1814 (4) ÅT = 293 K
β = 107.428 (2)°Block, light green
V = 1826.28 (10) Å30.15 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4551 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 33.4°, θmin = 2.8°
ω and ϕ scansh = 2424
26571 measured reflectionsk = 1210
7059 independent reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.444P]
where P = (Fo2 + 2Fc2)/3
7059 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.61 e Å3
3 restraintsΔρmin = 0.43 e Å3
Crystal data top
C22H14O2S3V = 1826.28 (10) Å3
Mr = 406.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1602 (5) ŵ = 0.42 mm1
b = 8.3524 (3) ÅT = 293 K
c = 14.1814 (4) Å0.15 × 0.13 × 0.10 mm
β = 107.428 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4551 reflections with I > 2σ(I)
26571 measured reflectionsRint = 0.028
7059 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.99Δρmax = 0.61 e Å3
7059 reflectionsΔρmin = 0.43 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.28863 (11)0.4031 (2)0.01894 (14)0.0499 (4)
H10.29490.35690.08040.060*
C20.35994 (12)0.4572 (3)0.00498 (16)0.0578 (5)
H20.41450.44900.04120.069*
C30.35223 (12)0.5241 (2)0.09694 (18)0.0597 (5)
H30.40170.55900.11150.072*
C40.27258 (12)0.5395 (2)0.16681 (16)0.0533 (4)
H40.26740.58370.22850.064*
C50.19971 (10)0.48665 (19)0.14227 (13)0.0419 (3)
C60.20599 (10)0.41809 (19)0.05007 (12)0.0400 (3)
C70.12301 (10)0.3765 (2)0.03966 (13)0.0430 (3)
H70.11530.32870.01640.052*
C80.05619 (10)0.41564 (19)0.12239 (11)0.0374 (3)
C90.03586 (9)0.39615 (18)0.13747 (11)0.0364 (3)
C100.07580 (9)0.29651 (18)0.08760 (11)0.0357 (3)
C11A0.08383 (17)0.1322 (5)0.0432 (2)0.0502 (8)0.623 (3)
H11A0.09370.21250.08810.060*0.623 (3)
H11B0.05430.04200.08200.060*0.623 (3)
C12A0.16828 (17)0.0790 (3)0.0260 (2)0.0485 (6)0.623 (3)
H12A0.15740.00050.07070.058*0.623 (3)
H12B0.20220.02830.01170.058*0.623 (3)
C11B0.0915 (3)0.0850 (5)0.0061 (4)0.0502 (8)0.377 (3)
H11C0.06230.02950.06700.060*0.377 (3)
H11D0.10460.00590.04640.060*0.377 (3)
C12B0.1754 (3)0.1472 (7)0.0147 (2)0.0485 (6)0.377 (3)
H12C0.20920.06220.03180.058*0.377 (3)
H12D0.16580.23090.06430.058*0.377 (3)
C130.16712 (9)0.30254 (18)0.12251 (11)0.0365 (3)
C140.19858 (9)0.40987 (19)0.19816 (11)0.0362 (3)
C150.28812 (9)0.44752 (19)0.24924 (11)0.0352 (3)
C160.36041 (10)0.3755 (2)0.23942 (12)0.0416 (3)
H160.35870.28930.19730.050*
C170.43920 (10)0.44442 (19)0.29966 (11)0.0380 (3)
C180.52506 (11)0.4008 (2)0.30912 (15)0.0512 (4)
H180.53660.31590.27250.061*
C190.59199 (11)0.4840 (2)0.37253 (15)0.0521 (4)
H190.64890.45580.37810.062*
C200.57576 (11)0.6105 (2)0.42876 (14)0.0483 (4)
H200.62200.66450.47220.058*
C210.49236 (11)0.6563 (2)0.42076 (13)0.0469 (4)
H210.48160.74140.45780.056*
C220.42398 (9)0.57260 (19)0.35592 (11)0.0374 (3)
O10.03162 (7)0.19777 (15)0.01304 (9)0.0476 (3)
O20.21883 (7)0.21067 (15)0.08407 (9)0.0467 (3)
S10.11311 (2)0.50367 (5)0.22588 (3)0.04068 (11)
S20.31369 (3)0.60648 (5)0.33305 (3)0.04677 (12)
S30.09260 (3)0.49989 (6)0.21576 (3)0.04834 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (8)0.0560 (10)0.0467 (9)0.0071 (7)0.0047 (7)0.0089 (8)
C20.0338 (8)0.0654 (12)0.0667 (12)0.0030 (8)0.0037 (8)0.0162 (10)
C30.0355 (8)0.0585 (11)0.0856 (15)0.0057 (8)0.0188 (9)0.0054 (10)
C40.0418 (9)0.0515 (10)0.0684 (12)0.0037 (7)0.0192 (8)0.0063 (9)
C50.0336 (7)0.0393 (8)0.0529 (9)0.0002 (6)0.0131 (6)0.0001 (7)
C60.0355 (7)0.0390 (8)0.0445 (8)0.0019 (6)0.0103 (6)0.0061 (6)
C70.0352 (7)0.0473 (9)0.0470 (8)0.0003 (6)0.0132 (6)0.0079 (7)
C80.0331 (7)0.0393 (8)0.0401 (7)0.0004 (5)0.0114 (5)0.0008 (6)
C90.0316 (6)0.0395 (8)0.0378 (7)0.0003 (5)0.0098 (5)0.0003 (6)
C100.0332 (6)0.0376 (7)0.0353 (7)0.0025 (5)0.0086 (5)0.0015 (6)
C11A0.0450 (11)0.070 (2)0.0369 (17)0.0104 (12)0.0148 (13)0.0198 (14)
C12A0.0432 (11)0.0540 (18)0.0478 (15)0.0009 (11)0.0128 (11)0.0150 (11)
C11B0.0450 (11)0.070 (2)0.0369 (17)0.0104 (12)0.0148 (13)0.0198 (14)
C12B0.0432 (11)0.0540 (18)0.0478 (15)0.0009 (11)0.0128 (11)0.0150 (11)
C130.0340 (7)0.0378 (8)0.0383 (7)0.0019 (5)0.0116 (5)0.0024 (6)
C140.0317 (6)0.0395 (8)0.0368 (7)0.0001 (5)0.0095 (5)0.0018 (6)
C150.0338 (7)0.0372 (7)0.0349 (7)0.0016 (5)0.0106 (5)0.0026 (6)
C160.0363 (7)0.0423 (8)0.0461 (8)0.0022 (6)0.0122 (6)0.0089 (7)
C170.0338 (7)0.0402 (8)0.0411 (7)0.0023 (6)0.0130 (6)0.0008 (6)
C180.0364 (8)0.0547 (10)0.0645 (11)0.0013 (7)0.0181 (7)0.0109 (8)
C190.0328 (8)0.0577 (11)0.0659 (11)0.0027 (7)0.0153 (7)0.0001 (9)
C200.0360 (8)0.0509 (10)0.0535 (9)0.0103 (7)0.0066 (7)0.0011 (8)
C210.0402 (8)0.0486 (9)0.0495 (9)0.0081 (7)0.0096 (7)0.0090 (7)
C220.0324 (7)0.0401 (8)0.0394 (7)0.0029 (6)0.0103 (5)0.0005 (6)
O10.0379 (6)0.0534 (7)0.0495 (6)0.0055 (5)0.0100 (5)0.0169 (5)
O20.0355 (5)0.0520 (7)0.0520 (6)0.0028 (5)0.0121 (5)0.0160 (5)
S10.03413 (18)0.0475 (2)0.0409 (2)0.00031 (15)0.01199 (14)0.00916 (16)
S20.03469 (19)0.0501 (2)0.0539 (2)0.00041 (16)0.01081 (16)0.01687 (18)
S30.0361 (2)0.0621 (3)0.0464 (2)0.00043 (17)0.01175 (16)0.01084 (19)
Geometric parameters (Å, º) top
C1—C21.372 (3)C11B—O11.434 (2)
C1—C61.405 (2)C11B—C12B1.490 (3)
C1—H10.93C11B—H11C0.97
C2—C31.390 (3)C11B—H11D0.97
C2—H20.93C12B—O21.465 (3)
C3—C41.375 (3)C12B—H12C0.97
C3—H30.93C12B—H12D0.97
C4—C51.396 (2)C13—O21.3627 (18)
C4—H40.93C13—C141.373 (2)
C5—C61.403 (2)C14—C151.445 (2)
C5—S31.7361 (17)C14—S11.7325 (15)
C6—C71.435 (2)C15—C161.358 (2)
C7—C81.375 (2)C15—S21.7470 (15)
C7—H70.93C16—C171.425 (2)
C8—C91.447 (2)C16—H160.93
C8—S31.7496 (16)C17—C221.400 (2)
C9—C101.372 (2)C17—C181.401 (2)
C9—S11.7318 (15)C18—C191.371 (3)
C10—O11.3622 (18)C18—H180.93
C10—C131.410 (2)C19—C201.395 (3)
C11A—O11.433 (2)C19—H190.93
C11A—C12A1.490 (3)C20—C211.373 (2)
C11A—H11A0.97C20—H200.93
C11A—H11B0.97C21—C221.395 (2)
C12A—O21.467 (2)C21—H210.93
C12A—H12A0.97C22—S21.7365 (15)
C12A—H12B0.97
C2—C1—C6119.47 (18)C12B—C11B—H11D107.8
C2—C1—H1120.3H11C—C11B—H11D107.2
C6—C1—H1120.3O2—C12B—C11B103.6 (3)
C1—C2—C3121.26 (17)O2—C12B—H12C111.0
C1—C2—H2119.4C11B—C12B—H12C111.0
C3—C2—H2119.4O2—C12B—H12D111.0
C4—C3—C2121.00 (18)C11B—C12B—H12D111.0
C4—C3—H3119.5H12C—C12B—H12D109.0
C2—C3—H3119.5O2—C13—C14123.51 (13)
C3—C4—C5117.93 (19)O2—C13—C10122.83 (13)
C3—C4—H4121.0C14—C13—C10113.66 (13)
C5—C4—H4121.0C13—C14—C15127.90 (14)
C4—C5—C6122.04 (16)C13—C14—S1109.79 (11)
C4—C5—S3126.46 (15)C15—C14—S1122.30 (12)
C6—C5—S3111.48 (12)C16—C15—C14127.96 (14)
C5—C6—C1118.29 (16)C16—C15—S2111.78 (11)
C5—C6—C7112.69 (14)C14—C15—S2120.24 (11)
C1—C6—C7129.00 (17)C15—C16—C17113.66 (14)
C8—C7—C6111.96 (15)C15—C16—H16123.2
C8—C7—H7124.0C17—C16—H16123.2
C6—C7—H7124.0C22—C17—C18118.81 (15)
C7—C8—C9127.53 (14)C22—C17—C16111.87 (13)
C7—C8—S3112.65 (12)C18—C17—C16129.32 (16)
C9—C8—S3119.82 (11)C19—C18—C17119.69 (17)
C10—C9—C8127.84 (14)C19—C18—H18120.2
C10—C9—S1109.84 (11)C17—C18—H18120.2
C8—C9—S1122.33 (12)C18—C19—C20120.82 (16)
O1—C10—C9123.31 (13)C18—C19—H19119.6
O1—C10—C13122.97 (13)C20—C19—H19119.6
C9—C10—C13113.69 (13)C21—C20—C19120.79 (16)
O1—C11A—C12A108.9 (2)C21—C20—H20119.6
O1—C11A—H11A109.9C19—C20—H20119.6
C12A—C11A—H11A109.9C20—C21—C22118.62 (17)
O1—C11A—H11B109.9C20—C21—H21120.7
C12A—C11A—H11B109.9C22—C21—H21120.7
H11A—C11A—H11B108.3C21—C22—C17121.27 (15)
O2—C12A—C11A113.1 (2)C21—C22—S2127.40 (13)
O2—C12A—H12A109.0C17—C22—S2111.34 (11)
C11A—C12A—H12A109.0C10—O1—C11A113.88 (16)
O2—C12A—H12B109.0C10—O1—C11B108.6 (3)
C11A—C12A—H12B109.0C13—O2—C12B114.2 (2)
H12A—C12A—H12B107.8C13—O2—C12A109.99 (15)
O1—C11B—C12B117.9 (4)C9—S1—C1492.98 (7)
O1—C11B—H11C107.8C22—S2—C1591.35 (7)
C12B—C11B—H11C107.8C5—S3—C891.20 (8)
O1—C11B—H11D107.8
C6—C1—C2—C31.2 (3)C15—C16—C17—C18179.46 (17)
C1—C2—C3—C40.6 (3)C22—C17—C18—C190.2 (3)
C2—C3—C4—C50.4 (3)C16—C17—C18—C19179.69 (18)
C3—C4—C5—C60.7 (3)C17—C18—C19—C200.8 (3)
C3—C4—C5—S3177.48 (15)C18—C19—C20—C211.0 (3)
C4—C5—C6—C10.1 (2)C19—C20—C21—C220.7 (3)
S3—C5—C6—C1178.33 (13)C20—C21—C22—C170.1 (3)
C4—C5—C6—C7178.37 (16)C20—C21—C22—S2179.76 (14)
S3—C5—C6—C70.02 (18)C18—C17—C22—C210.2 (2)
C2—C1—C6—C50.8 (2)C16—C17—C22—C21179.43 (15)
C2—C1—C6—C7177.15 (17)C18—C17—C22—S2179.96 (13)
C5—C6—C7—C80.8 (2)C16—C17—C22—S20.43 (18)
C1—C6—C7—C8177.27 (16)C9—C10—O1—C11A166.6 (2)
C6—C7—C8—C9177.96 (15)C13—C10—O1—C11A15.2 (3)
C6—C7—C8—S31.29 (18)C9—C10—O1—C11B166.3 (3)
C7—C8—C9—C1020.4 (3)C13—C10—O1—C11B11.9 (3)
S3—C8—C9—C10160.45 (14)C12A—C11A—O1—C1043.7 (3)
C7—C8—C9—S1159.31 (14)C12A—C11A—O1—C11B39.6 (5)
S3—C8—C9—S119.89 (18)C12B—C11B—O1—C1046.7 (5)
C8—C9—C10—O10.2 (3)C12B—C11B—O1—C11A60.0 (5)
S1—C9—C10—O1179.48 (12)C14—C13—O2—C12B160.2 (3)
C8—C9—C10—C13178.15 (15)C10—C13—O2—C12B19.4 (3)
S1—C9—C10—C132.15 (17)C14—C13—O2—C12A163.91 (19)
O1—C11A—C12A—O262.3 (4)C10—C13—O2—C12A16.4 (2)
O1—C11B—C12B—O264.4 (6)C11B—C12B—O2—C1346.1 (4)
O1—C10—C13—O20.4 (2)C11B—C12B—O2—C12A43.8 (2)
C9—C10—C13—O2178.81 (14)C11A—C12A—O2—C1347.1 (3)
O1—C10—C13—C14179.88 (14)C11A—C12A—O2—C12B56.9 (4)
C9—C10—C13—C141.5 (2)C10—C9—S1—C141.77 (12)
O2—C13—C14—C150.8 (3)C8—C9—S1—C14178.51 (13)
C10—C13—C14—C15178.84 (15)C13—C14—S1—C90.95 (13)
O2—C13—C14—S1179.79 (12)C15—C14—S1—C9179.96 (13)
C10—C13—C14—S10.11 (17)C21—C22—S2—C15179.22 (16)
C13—C14—C15—C166.2 (3)C17—C22—S2—C150.63 (13)
S1—C14—C15—C16174.99 (14)C16—C15—S2—C220.69 (13)
C13—C14—C15—S2171.90 (13)C14—C15—S2—C22179.06 (13)
S1—C14—C15—S26.92 (19)C4—C5—S3—C8177.68 (17)
C14—C15—C16—C17178.79 (15)C6—C5—S3—C80.63 (13)
S2—C15—C16—C170.57 (19)C7—C8—S3—C51.11 (13)
C15—C16—C17—C220.1 (2)C9—C8—S3—C5178.20 (13)

Experimental details

Crystal data
Chemical formulaC22H14O2S3
Mr406.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.1602 (5), 8.3524 (3), 14.1814 (4)
β (°) 107.428 (2)
V3)1826.28 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26571, 7059, 4551
Rint0.028
(sin θ/λ)max1)0.774
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.143, 0.99
No. of reflections7059
No. of parameters251
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

 

Acknowledgements

PS and SR thank Mr P. Charles for his help in solving the structure.

References

First citationAmaladass, P., Clement, J. A. & Mohanakrishnan, A. K. (2007). Tetrahedron, 63, 10363–1067.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1322–1334.  PubMed Web of Science Google Scholar
First citationCsaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121–128.  CAS PubMed Google Scholar
First citationDzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Farm. Zh. 26, 73–75.  CAS Google Scholar
First citationEI-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327–336.  Google Scholar
First citationGewald, K., Schinke, E. & Botcher, H. (1996). Chem. Ber. 99, 99–100.  Google Scholar
First citationLakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci. 47, 202–204.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320–324. London: Butterworth & Co. Ltd.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds