organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(4-{6-methyl-4-[3-(tri­fluoro­meth­yl)phen­yl]pyridazin-3-yl­­oxy}phen­yl)propanoate

aState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: zyq8165@nankai.edu.cn

(Received 14 April 2008; accepted 6 May 2008; online 10 May 2008)

In the title compound, C22H19F3N2O3, the benzene rings of the trifluoro­methyl­phenyl and benzoyl­phenyl groups form dihedral angles of 41.89 (10) and 67.44 (10)°, respectively, with the pyridazine ring. The methyl­propanoate group is nearly coplanar with the attached benzene ring [dihedral angle = 3.9 (2)°]. The trifluoro­methyl group is disordered over two positions; the site-occupancy factors are ca 0.64 and 0.36. In the crystal structure, inversion-related mol­ecules are linked through C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activities of pyridazine derivatives, see: Heinisch & Kopelent (1992[Heinisch, G. & Kopelent, H. (1992). Prog. Med. Chem. 29, 141-183.]); Kolar & Tisler (1999[Kolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem. 75, 167-241.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19F3N2O3

  • Mr = 416.39

  • Triclinic, [P \overline 1]

  • a = 9.4916 (19) Å

  • b = 10.232 (2) Å

  • c = 11.022 (2) Å

  • α = 81.70 (3)°

  • β = 65.12 (3)°

  • γ = 78.92 (3)°

  • V = 950.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 (2) K

  • 0.20 × 0.16 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.977, Tmax = 0.993

  • 5529 measured reflections

  • 3319 independent reflections

  • 1862 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.147

  • S = 1.06

  • 3319 reflections

  • 301 parameters

  • 72 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.96 2.57 3.467 (4) 156
C22—H22CCg1ii 0.96 2.73 3.486 (4) 136
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1. Cg1 is the centroid of the C2–C7 ring.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many pyridazine derivatives have been found to exhibit biological activities such as insecticidal, fungicidal, herbicidal, plant-growth regulatory activity, etc (Heinisch & Kopelent, 1992). For example, pyridate, credazine and maleic hydrazide (Kolar & Tisler, 1999) have been commercialized as herbicides. In order to discover new biologically active pyridazine compounds, the title compound was synthesized and its structure is reported here.

In the title molecule (Fig. 1), the C2—C7 and C13—C18 benzene rings form dihedral angles of 41.89 (10)° and 67.44 (10)°, respectively, with the central pyridazine ring (C2—C4/C12/N1/N2). The methylpropanoate group is nearly coplanar with the C13—C18 benzene ring (dihedral angle 3.9 (2)°).

The crystal packing is stabilized by C—H···O hydrogen bonds and C—H···π interactions (Table 1) involving the C2—C7 ring (centroid Cg1).

Related literature top

For the biological activities of pyridazine derivatives, see: Heinisch & Kopelent (1992); Kolar & Tisler (1999). Cg1 is the centroid of the C2–C7 ring.

Experimental top

A mixture of methyl 3-(4-hydroxyphenyl)propanoate (2.3 mmol), 3-chloro-4- (3-(trifluoromethyl)phenyl)-6-methylpyridazine (2.3 mmol) and K2CO3 (5 mmol) was stirred at 313 K for 2 h. The crude product was recrystallized from ethanol and single crystals of the title compound suitable for X-ray analysis were grown from ethyl acetate-petroleum ether (3:1 v/v) at room temperature.

Refinement top

The trifluoromethyl group is disordered over two orienatations (C1/F1/F2/F3 and C1/F1'/F2'/F3') with refined occupancies of 0.636 (12) and 0.364 (12). All C—F distances were restrained to 1.34 (1) Å and the Uij components of disordered F atoms were restrained to be approximately isotropic. All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Only one disorder component is shown.
Methyl 3-(4-{6-methyl-4-[3-(trifluoromethyl)phenyl]pyridazin-3- yloxy}phenyl)propanoate top
Crystal data top
C22H19F3N2O3Z = 2
Mr = 416.39F(000) = 432
Triclinic, P1Dx = 1.455 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4916 (19) ÅCell parameters from 2351 reflections
b = 10.232 (2) Åθ = 2.0–27.9°
c = 11.022 (2) ŵ = 0.12 mm1
α = 81.70 (3)°T = 113 K
β = 65.12 (3)°Plate, colourless
γ = 78.92 (3)°0.20 × 0.16 × 0.06 mm
V = 950.6 (4) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3319 independent reflections
Radiation source: rotating anode1862 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.054
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω and ϕ scansh = 1011
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1211
Tmin = 0.977, Tmax = 0.993l = 1311
5529 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0675P)2]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max = 0.003
301 parametersΔρmax = 0.40 e Å3
72 restraintsΔρmin = 0.39 e Å3
Crystal data top
C22H19F3N2O3γ = 78.92 (3)°
Mr = 416.39V = 950.6 (4) Å3
Triclinic, P1Z = 2
a = 9.4916 (19) ÅMo Kα radiation
b = 10.232 (2) ŵ = 0.12 mm1
c = 11.022 (2) ÅT = 113 K
α = 81.70 (3)°0.20 × 0.16 × 0.06 mm
β = 65.12 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3319 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1862 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.993Rint = 0.054
5529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05572 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3319 reflectionsΔρmin = 0.39 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F11.0340 (5)0.3434 (7)0.0132 (7)0.0359 (15)0.636 (12)
F20.8747 (11)0.3445 (7)0.0736 (7)0.072 (2)0.636 (12)
F30.7991 (6)0.4176 (6)0.1223 (8)0.079 (3)0.636 (12)
F1'1.0297 (11)0.3418 (14)0.0418 (14)0.071 (4)0.364 (12)
F2'0.7900 (12)0.3936 (8)0.0042 (15)0.055 (3)0.364 (12)
F3'0.8553 (19)0.4059 (12)0.1421 (11)0.076 (4)0.364 (12)
O10.39298 (18)0.1498 (2)0.2418 (2)0.0286 (6)
O20.5057 (2)0.5985 (2)0.6250 (2)0.0409 (7)
O30.4466 (2)0.7531 (2)0.4543 (2)0.0330 (6)
N10.3114 (2)0.1545 (3)0.1899 (3)0.0246 (7)
N20.2934 (2)0.0267 (3)0.2179 (3)0.0251 (7)
C10.8892 (3)0.3235 (3)0.0444 (3)0.0327 (9)
C20.8618 (3)0.1868 (3)0.1025 (3)0.0228 (8)
C30.9650 (3)0.1072 (3)0.1502 (3)0.0258 (8)
H31.05180.13990.14640.031*
C40.9393 (3)0.0202 (3)0.2033 (3)0.0266 (8)
H41.00830.07380.23610.032*
C50.8108 (3)0.0688 (3)0.2079 (3)0.0241 (8)
H50.79470.15550.24300.029*
C60.7056 (2)0.0103 (3)0.1608 (3)0.0194 (7)
C70.7313 (3)0.1389 (3)0.1080 (3)0.0205 (7)
H70.66160.19310.07630.025*
C80.5697 (3)0.0462 (3)0.1662 (3)0.0191 (7)
C90.5840 (3)0.1748 (3)0.1379 (3)0.0227 (7)
H90.68180.22780.10920.027*
C100.4511 (3)0.2271 (3)0.1519 (3)0.0216 (7)
C110.4609 (3)0.3680 (3)0.1257 (3)0.0319 (9)
H11A0.35750.38680.14660.048*
H11B0.50550.42690.18060.048*
H11C0.52590.38110.03290.048*
C120.4159 (3)0.0228 (3)0.2087 (3)0.0202 (7)
C130.2387 (3)0.2146 (3)0.3058 (3)0.0260 (8)
C140.1408 (3)0.1712 (3)0.4317 (3)0.0353 (10)
H140.17210.09310.47430.042*
C150.0044 (3)0.2448 (3)0.4941 (3)0.0340 (9)
H150.07100.21500.57920.041*
C160.0543 (3)0.3619 (3)0.4340 (3)0.0215 (7)
C170.0473 (3)0.4015 (3)0.3070 (3)0.0311 (9)
H170.01680.47940.26360.037*
C180.1928 (3)0.3285 (3)0.2428 (3)0.0324 (9)
H180.25930.35680.15700.039*
C190.2110 (3)0.4412 (3)0.5096 (3)0.0250 (8)
H19A0.29050.38330.53700.030*
H19B0.21020.46730.59050.030*
C200.2594 (3)0.5645 (3)0.4362 (3)0.0287 (8)
H20A0.18150.62400.40940.034*
H20B0.26150.53960.35540.034*
C210.4164 (3)0.6373 (3)0.5179 (3)0.0246 (8)
C220.5929 (3)0.8355 (3)0.5257 (4)0.0392 (9)
H22A0.67860.79560.52980.059*
H22B0.59420.92260.47980.059*
H22C0.60340.84310.61500.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0233 (17)0.036 (2)0.049 (3)0.0158 (15)0.0157 (19)0.011 (3)
F20.123 (5)0.063 (4)0.071 (4)0.058 (3)0.075 (4)0.042 (3)
F30.041 (3)0.028 (3)0.102 (5)0.003 (2)0.027 (3)0.006 (3)
F1'0.052 (4)0.035 (4)0.069 (7)0.004 (3)0.025 (4)0.012 (5)
F2'0.057 (4)0.035 (4)0.093 (7)0.009 (3)0.056 (4)0.019 (4)
F3'0.129 (8)0.040 (5)0.051 (5)0.008 (6)0.026 (6)0.014 (4)
O10.0136 (9)0.0279 (13)0.0422 (15)0.0010 (8)0.0076 (9)0.0135 (11)
O20.0284 (11)0.0378 (15)0.0377 (16)0.0032 (10)0.0012 (10)0.0053 (12)
O30.0283 (10)0.0297 (13)0.0279 (14)0.0109 (9)0.0045 (9)0.0039 (11)
N10.0212 (11)0.0294 (15)0.0253 (16)0.0046 (11)0.0108 (10)0.0031 (12)
N20.0198 (11)0.0284 (16)0.0286 (16)0.0037 (10)0.0104 (11)0.0046 (12)
C10.0232 (15)0.038 (2)0.037 (2)0.0089 (15)0.0131 (15)0.0076 (19)
C20.0160 (12)0.0280 (18)0.0207 (18)0.0029 (11)0.0039 (11)0.0019 (14)
C30.0154 (12)0.0360 (19)0.0261 (19)0.0052 (12)0.0083 (12)0.0008 (15)
C40.0179 (13)0.0323 (19)0.030 (2)0.0012 (12)0.0133 (12)0.0042 (15)
C50.0179 (12)0.0241 (17)0.0269 (19)0.0018 (11)0.0070 (12)0.0003 (14)
C60.0124 (12)0.0271 (17)0.0154 (16)0.0008 (11)0.0022 (11)0.0053 (13)
C70.0146 (12)0.0280 (18)0.0161 (17)0.0013 (11)0.0050 (11)0.0031 (13)
C80.0159 (12)0.0283 (18)0.0124 (17)0.0022 (12)0.0054 (11)0.0016 (14)
C90.0180 (12)0.0278 (18)0.0191 (18)0.0007 (12)0.0059 (12)0.0024 (14)
C100.0226 (13)0.0246 (17)0.0169 (17)0.0042 (12)0.0069 (12)0.0013 (13)
C110.0278 (14)0.0296 (19)0.035 (2)0.0048 (13)0.0091 (14)0.0047 (16)
C120.0156 (12)0.0246 (17)0.0194 (18)0.0002 (12)0.0059 (11)0.0059 (14)
C130.0140 (12)0.0303 (18)0.034 (2)0.0019 (12)0.0080 (12)0.0097 (15)
C140.0269 (15)0.040 (2)0.033 (2)0.0083 (14)0.0122 (14)0.0010 (17)
C150.0232 (14)0.041 (2)0.026 (2)0.0040 (13)0.0049 (13)0.0035 (16)
C160.0151 (12)0.0253 (17)0.0235 (18)0.0003 (11)0.0064 (12)0.0079 (14)
C170.0251 (14)0.0235 (18)0.031 (2)0.0039 (13)0.0021 (13)0.0000 (15)
C180.0244 (14)0.0294 (19)0.031 (2)0.0042 (13)0.0008 (13)0.0002 (16)
C190.0210 (13)0.0270 (18)0.0226 (18)0.0019 (12)0.0057 (12)0.0051 (14)
C200.0255 (14)0.0269 (18)0.029 (2)0.0005 (12)0.0073 (13)0.0027 (15)
C210.0216 (13)0.0245 (18)0.027 (2)0.0018 (12)0.0091 (13)0.0046 (15)
C220.0351 (16)0.035 (2)0.039 (2)0.0139 (14)0.0126 (15)0.0098 (17)
Geometric parameters (Å, º) top
F1—C11.319 (5)C8—C121.405 (3)
F2—C11.347 (5)C9—C101.405 (4)
F3—C11.304 (7)C9—H90.93
F1'—C11.302 (8)C10—C111.489 (4)
F2'—C11.320 (6)C11—H11A0.96
F3'—C11.357 (9)C11—H11B0.96
O1—C121.353 (4)C11—H11C0.96
O1—C131.405 (3)C13—C181.363 (4)
O2—C211.192 (3)C13—C141.372 (4)
O3—C211.333 (3)C14—C151.375 (4)
O3—C221.442 (3)C14—H140.93
N1—C101.316 (3)C15—C161.384 (4)
N1—N21.348 (4)C15—H150.93
N2—C121.317 (3)C16—C171.380 (4)
C1—C21.475 (4)C16—C191.502 (4)
C2—C31.379 (3)C17—C181.379 (4)
C2—C71.393 (4)C17—H170.93
C3—C41.372 (4)C18—H180.93
C3—H30.93C19—C201.501 (4)
C4—C51.382 (4)C19—H19A0.97
C4—H40.93C19—H19B0.97
C5—C61.388 (3)C20—C211.491 (4)
C5—H50.93C20—H20A0.97
C6—C71.382 (4)C20—H20B0.97
C6—C81.488 (4)C22—H22A0.96
C7—H70.93C22—H22B0.96
C8—C91.364 (4)C22—H22C0.96
C12—O1—C13119.0 (2)C10—C11—H11A109.5
C21—O3—C22116.2 (2)C10—C11—H11B109.5
C10—N1—N2119.7 (2)H11A—C11—H11B109.5
C12—N2—N1119.3 (2)C10—C11—H11C109.5
F1'—C1—F3119.9 (8)H11A—C11—H11C109.5
F3—C1—F1105.4 (5)H11B—C11—H11C109.5
F1'—C1—F2'106.9 (7)N2—C12—O1117.9 (2)
F3—C1—F2'69.2 (6)N2—C12—C8124.8 (3)
F1—C1—F2'126.6 (5)O1—C12—C8117.2 (2)
F1'—C1—F276.7 (7)C18—C13—C14120.7 (3)
F3—C1—F2109.6 (4)C18—C13—O1117.6 (2)
F1—C1—F2103.9 (4)C14—C13—O1121.6 (2)
F1'—C1—F3'104.6 (9)C13—C14—C15119.1 (3)
F1—C1—F3'82.7 (7)C13—C14—H14120.5
F2'—C1—F3'95.6 (7)C15—C14—H14120.5
F2—C1—F3'132.0 (6)C14—C15—C16122.0 (3)
F1'—C1—C2118.4 (6)C14—C15—H15119.0
F3—C1—C2114.6 (4)C16—C15—H15119.0
F1—C1—C2112.6 (4)C17—C16—C15117.1 (3)
F2'—C1—C2117.7 (4)C17—C16—C19123.3 (2)
F2—C1—C2110.1 (4)C15—C16—C19119.5 (2)
F3'—C1—C2110.7 (6)C18—C17—C16121.6 (3)
C3—C2—C7120.5 (3)C18—C17—H17119.2
C3—C2—C1120.2 (2)C16—C17—H17119.2
C7—C2—C1119.4 (2)C13—C18—C17119.6 (3)
C4—C3—C2119.8 (2)C13—C18—H18120.2
C4—C3—H3120.1C17—C18—H18120.2
C2—C3—H3120.1C20—C19—C16116.4 (2)
C3—C4—C5120.0 (2)C20—C19—H19A108.2
C3—C4—H4120.0C16—C19—H19A108.2
C5—C4—H4120.0C20—C19—H19B108.2
C4—C5—C6120.8 (3)C16—C19—H19B108.2
C4—C5—H5119.6H19A—C19—H19B107.3
C6—C5—H5119.6C21—C20—C19113.1 (2)
C7—C6—C5119.1 (2)C21—C20—H20A109.0
C7—C6—C8121.7 (2)C19—C20—H20A109.0
C5—C6—C8119.2 (2)C21—C20—H20B109.0
C6—C7—C2119.8 (2)C19—C20—H20B109.0
C6—C7—H7120.1H20A—C20—H20B107.8
C2—C7—H7120.1O2—C21—O3123.5 (3)
C9—C8—C12114.3 (2)O2—C21—C20125.7 (2)
C9—C8—C6121.7 (2)O3—C21—C20110.9 (2)
C12—C8—C6123.9 (3)O3—C22—H22A109.5
C8—C9—C10120.0 (2)O3—C22—H22B109.5
C8—C9—H9120.0H22A—C22—H22B109.5
C10—C9—H9120.0O3—C22—H22C109.5
N1—C10—C9121.7 (3)H22A—C22—H22C109.5
N1—C10—C11116.6 (2)H22B—C22—H22C109.5
C9—C10—C11121.7 (2)
C10—N1—N2—C121.1 (4)N2—N1—C10—C11178.8 (3)
F1'—C1—C2—C346.6 (11)C8—C9—C10—N11.2 (4)
F3—C1—C2—C3104.0 (6)C8—C9—C10—C11178.3 (3)
F1—C1—C2—C316.5 (6)N1—N2—C12—O1177.8 (2)
F2'—C1—C2—C3177.6 (8)N1—N2—C12—C82.6 (4)
F2—C1—C2—C3131.9 (6)C13—O1—C12—N211.0 (4)
F3'—C1—C2—C374.0 (8)C13—O1—C12—C8169.4 (2)
F1'—C1—C2—C7133.2 (10)C9—C8—C12—N22.1 (4)
F3—C1—C2—C776.3 (6)C6—C8—C12—N2178.0 (3)
F1—C1—C2—C7163.2 (5)C9—C8—C12—O1178.3 (3)
F2'—C1—C2—C72.2 (9)C6—C8—C12—O12.5 (4)
F2—C1—C2—C747.8 (6)C12—O1—C13—C18119.9 (3)
F3'—C1—C2—C7106.2 (8)C12—O1—C13—C1464.9 (4)
C7—C2—C3—C40.2 (5)C18—C13—C14—C150.4 (5)
C1—C2—C3—C4179.6 (3)O1—C13—C14—C15174.6 (3)
C2—C3—C4—C50.5 (5)C13—C14—C15—C160.4 (5)
C3—C4—C5—C60.8 (5)C14—C15—C16—C170.9 (5)
C4—C5—C6—C70.5 (5)C14—C15—C16—C19177.2 (3)
C4—C5—C6—C8179.4 (3)C15—C16—C17—C180.5 (5)
C5—C6—C7—C20.2 (5)C19—C16—C17—C18177.4 (3)
C8—C6—C7—C2178.7 (3)C14—C13—C18—C170.7 (5)
C3—C2—C7—C60.5 (5)O1—C13—C18—C17174.5 (3)
C1—C2—C7—C6179.3 (3)C16—C17—C18—C130.3 (5)
C7—C6—C8—C9139.4 (3)C17—C16—C19—C204.1 (5)
C5—C6—C8—C939.5 (4)C15—C16—C19—C20178.0 (3)
C7—C6—C8—C1245.0 (4)C16—C19—C20—C21179.8 (3)
C5—C6—C8—C12136.1 (3)C22—O3—C21—O23.2 (5)
C12—C8—C9—C100.1 (4)C22—O3—C21—C20177.6 (3)
C6—C8—C9—C10176.1 (2)C19—C20—C21—O27.7 (5)
N2—N1—C10—C90.8 (4)C19—C20—C21—O3173.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.962.573.467 (4)156
C22—H22C···Cg1ii0.962.733.486 (4)136
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H19F3N2O3
Mr416.39
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.4916 (19), 10.232 (2), 11.022 (2)
α, β, γ (°)81.70 (3), 65.12 (3), 78.92 (3)
V3)950.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.16 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.977, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5529, 3319, 1862
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.147, 1.06
No. of reflections3319
No. of parameters301
No. of restraints72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.39

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.962.573.467 (4)156
C22—H22C···Cg1ii0.962.733.486 (4)136
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the National Key Project for Basic Research (No. 20772067).

References

First citationHeinisch, G. & Kopelent, H. (1992). Prog. Med. Chem. 29, 141–183.  CrossRef PubMed CAS Google Scholar
First citationKolar, P. & Tisler, M. (1999). Adv. Heterocycl. Chem. 75, 167–241.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds