organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Cyano­phen­yl)methyl­ene di­acetate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 23 April 2008; accepted 29 April 2008; online 3 May 2008)

In the title mol­ecule, C12H11NO4, the two acetyl groups are inclined by 71.3 (1) and 46.2 (1)° to the benzene ring. In the crystal structure, mol­ecules are linked into a chain along the c axis by C—H⋯O hydrogen bonds.

Related literature

For general background on nitrile compounds, see: Jin et al. (1994[Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.]); Radl et al. (2000[Radl, S., Hezky, P., Konvicka, P. & Krejgi, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]). For a related structure, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO4

  • Mr = 233.22

  • Monoclinic, P 21 /c

  • a = 8.1389 (15) Å

  • b = 20.919 (3) Å

  • c = 7.7748 (10) Å

  • β = 115.531 (7)°

  • V = 1194.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.951, Tmax = 0.968

  • 11568 measured reflections

  • 2723 independent reflections

  • 2096 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.163

  • S = 1.11

  • 2723 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.56 3.351 (3) 137
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrile compounds are used extensively in the chemical industry. They are discharged into the environment in industrial waste water, agricultural chemicals, etc. Nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl et al., 2000), and they have been used as starting materials for phthalocyanines (Jin et al., 1994). Recently, we have reported the crystal structure of a benzonitrile compound (Fu et al., 2007). The title compound was unexpectedly obtained during our work on the nitrile compounds. Herein we report its crystal structure.

The bond lengths and angles have normal values. The O1/O2/C9/C10 and O3/O4/C11/C12 planes form dihedral angles of 71.3 (1)° and 46.2 (1)°, respectively, with the C2—C7 plane. The molecules are linked into a chain along the c axis by C—H···O hydrogen bonds (Table 1).

Related literature top

For general background on nitrile compounds, see: Jin et al. (1994); Radl et al. (2000). For a related structure, see: Fu & Zhao (2007).

Experimental top

4-Formylbenzonitrile (0.262 mg, 2 mmol) was dissolved in acetic anhydride (5 ml) and heated under reflux for 3 h. The mixture was cooled to room temperature and the solution was filtered. The solvent was removed under vacuum from the filtrate to obtain a white precipitate of the title compound (yield 88%). Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol (15 ml) solution of the compound (100 mg) after 4 d.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(4-Cyanophenyl)methylene diacetate top
Crystal data top
C12H11NO4F(000) = 488
Mr = 233.22Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2461 reflections
a = 8.1389 (15) Åθ = 3.1–27.5°
b = 20.919 (3) ŵ = 0.10 mm1
c = 7.7748 (10) ÅT = 293 K
β = 115.531 (7)°Block, colourless
V = 1194.5 (3) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2723 independent reflections
Radiation source: fine-focus sealed tube2096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2727
Tmin = 0.951, Tmax = 0.968l = 1010
11568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.2026P]
where P = (Fo2 + 2Fc2)/3
2723 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H11NO4V = 1194.5 (3) Å3
Mr = 233.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1389 (15) ŵ = 0.10 mm1
b = 20.919 (3) ÅT = 293 K
c = 7.7748 (10) Å0.35 × 0.30 × 0.30 mm
β = 115.531 (7)°
Data collection top
Rigaku Mercury2
diffractometer
2723 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2096 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.968Rint = 0.035
11568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.11Δρmax = 0.20 e Å3
2723 reflectionsΔρmin = 0.17 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4962 (2)0.34433 (9)0.7629 (3)0.0477 (4)
H10.52420.29850.77570.057*
C20.6526 (2)0.38246 (9)0.7624 (2)0.0462 (4)
C30.8165 (3)0.35208 (10)0.8026 (3)0.0586 (5)
H30.82870.30860.83000.070*
C40.9621 (3)0.38610 (11)0.8021 (3)0.0626 (5)
H41.07220.36560.83010.075*
C50.9433 (3)0.45058 (10)0.7598 (3)0.0565 (5)
C60.7805 (3)0.48137 (11)0.7208 (4)0.0693 (6)
H60.76850.52490.69360.083*
C70.6354 (3)0.44710 (10)0.7223 (3)0.0627 (5)
H70.52600.46770.69620.075*
C81.0936 (3)0.48634 (12)0.7541 (4)0.0701 (6)
C90.5275 (3)0.33307 (10)1.0797 (3)0.0535 (5)
C100.4826 (4)0.36266 (13)1.2275 (4)0.0779 (7)
H10A0.50700.33271.32920.117*
H10B0.35610.37421.17230.117*
H10C0.55570.40021.27680.117*
C110.2023 (3)0.31319 (10)0.5370 (4)0.0608 (5)
C120.0457 (3)0.33230 (13)0.3577 (4)0.0799 (7)
H12A0.02380.29510.29610.120*
H12B0.08950.35260.27470.120*
H12C0.03000.36160.38600.120*
N11.2104 (3)0.51476 (12)0.7475 (4)0.0967 (8)
O10.45266 (18)0.36634 (6)0.91409 (19)0.0536 (4)
O20.6196 (2)0.28659 (9)1.0993 (2)0.0757 (5)
O30.33842 (17)0.35734 (6)0.59147 (18)0.0545 (4)
O40.2134 (2)0.26588 (8)0.6276 (3)0.0905 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0498 (10)0.0476 (9)0.0466 (9)0.0048 (8)0.0217 (8)0.0008 (7)
C20.0465 (9)0.0503 (10)0.0406 (9)0.0022 (8)0.0178 (7)0.0018 (7)
C30.0548 (11)0.0518 (11)0.0689 (13)0.0068 (9)0.0266 (10)0.0037 (9)
C40.0480 (11)0.0687 (13)0.0728 (14)0.0092 (9)0.0277 (10)0.0020 (10)
C50.0496 (10)0.0654 (12)0.0553 (11)0.0037 (9)0.0234 (9)0.0012 (9)
C60.0612 (13)0.0515 (11)0.0986 (18)0.0007 (10)0.0377 (13)0.0069 (11)
C70.0524 (11)0.0526 (11)0.0866 (15)0.0078 (9)0.0333 (11)0.0069 (10)
C80.0574 (13)0.0760 (15)0.0783 (16)0.0037 (11)0.0304 (11)0.0028 (12)
C90.0505 (10)0.0609 (12)0.0505 (11)0.0104 (9)0.0230 (9)0.0027 (9)
C100.0912 (17)0.0936 (18)0.0642 (14)0.0232 (14)0.0478 (13)0.0149 (12)
C110.0513 (11)0.0548 (11)0.0786 (14)0.0018 (9)0.0303 (10)0.0020 (10)
C120.0525 (12)0.0849 (16)0.0844 (17)0.0072 (11)0.0126 (11)0.0059 (13)
N10.0668 (14)0.0997 (17)0.129 (2)0.0114 (12)0.0470 (14)0.0127 (15)
O10.0614 (8)0.0528 (7)0.0533 (8)0.0088 (6)0.0310 (6)0.0040 (6)
O20.0770 (11)0.0842 (11)0.0665 (10)0.0217 (9)0.0315 (8)0.0249 (8)
O30.0500 (7)0.0556 (8)0.0513 (8)0.0048 (6)0.0158 (6)0.0033 (6)
O40.0642 (10)0.0731 (11)0.1270 (16)0.0078 (8)0.0344 (10)0.0250 (11)
Geometric parameters (Å, º) top
C1—O31.423 (2)C7—H70.93
C1—O11.441 (2)C8—N11.141 (3)
C1—C21.504 (3)C9—O21.197 (3)
C1—H10.98C9—O11.355 (2)
C2—C71.381 (3)C9—C101.483 (3)
C2—C31.386 (3)C10—H10A0.96
C3—C41.384 (3)C10—H10B0.96
C3—H30.93C10—H10C0.96
C4—C51.381 (3)C11—O41.196 (3)
C4—H40.93C11—O31.362 (2)
C5—C61.384 (3)C11—C121.482 (3)
C5—C81.451 (3)C12—H12A0.96
C6—C71.386 (3)C12—H12B0.96
C6—H60.93C12—H12C0.96
O3—C1—O1105.26 (14)C6—C7—H7119.8
O3—C1—C2108.62 (14)N1—C8—C5179.2 (3)
O1—C1—C2109.80 (14)O2—C9—O1122.60 (18)
O3—C1—H1111.0O2—C9—C10126.2 (2)
O1—C1—H1111.0O1—C9—C10111.2 (2)
C2—C1—H1111.0C9—C10—H10A109.5
C7—C2—C3119.60 (18)C9—C10—H10B109.5
C7—C2—C1121.08 (17)H10A—C10—H10B109.5
C3—C2—C1119.32 (16)C9—C10—H10C109.5
C4—C3—C2120.36 (19)H10A—C10—H10C109.5
C4—C3—H3119.8H10B—C10—H10C109.5
C2—C3—H3119.8O4—C11—O3122.2 (2)
C5—C4—C3119.73 (19)O4—C11—C12126.4 (2)
C5—C4—H4120.1O3—C11—C12111.37 (19)
C3—C4—H4120.1C11—C12—H12A109.5
C4—C5—C6120.28 (19)C11—C12—H12B109.5
C4—C5—C8120.14 (19)H12A—C12—H12B109.5
C6—C5—C8119.6 (2)C11—C12—H12C109.5
C5—C6—C7119.7 (2)H12A—C12—H12C109.5
C5—C6—H6120.1H12B—C12—H12C109.5
C7—C6—H6120.1C9—O1—C1116.28 (15)
C2—C7—C6120.30 (19)C11—O3—C1116.52 (15)
C2—C7—H7119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.563.351 (3)137
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H11NO4
Mr233.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1389 (15), 20.919 (3), 7.7748 (10)
β (°) 115.531 (7)
V3)1194.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.951, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
11568, 2723, 2096
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.163, 1.11
No. of reflections2723
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.563.351 (3)137
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.  CrossRef CAS Web of Science Google Scholar
First citationRadl, S., Hezky, P., Konvicka, P. & Krejgi, J. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds