organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-1-(2,4-di­chloro-5-fluoro­phen­yl)-3-phenyl­propan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSyngene International Pvt Limited, Plot No. 2 & 3 C, Unit-II, Bommansandra Industrial Area, Banglore 560 099, India, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 April 2008; accepted 5 May 2008; online 10 May 2008)

In the title compound, C15H9Br2Cl2FO, the dihedral angle between the two aromatic rings is 6.0 (1)°. The dibromo­ethane fragment of the propan-1-one unit is disordered over two positions, with occupancies of ca 0.83 and 0.17. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds, C—H⋯π inter­actions, and Br⋯Cl [3.505 (2) and 3.576 (6) Å] and Cl⋯F [3.176 (2) Å] short contacts.

Related literature

For related literature, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.]); John Kiran et al. (2007[John Kiran, A., Mithun, A., Shivarama Holla, B., Shashikala, H. D., Umesh, G. & Chandrasekharan, K. (2007). Opt. Commun. 269, 235-240.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the preparation, see: Shivarama Holla et al. 2006[Shivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem. 41, 657-663.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9Br2Cl2FO

  • Mr = 454.94

  • Orthorhombic, P b c a

  • a = 7.1232 (1) Å

  • b = 10.0757 (2) Å

  • c = 43.0262 (7) Å

  • V = 3088.04 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.60 mm−1

  • T = 100 (2) K

  • 0.40 × 0.24 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.211, Tmax = 0.508 (expected range = 0.190–0.457)

  • 26343 measured reflections

  • 5857 independent reflections

  • 3681 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.089

  • S = 0.98

  • 5857 reflections

  • 227 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.45 3.392 (4) 170
C8—H8⋯O1i 1.00 2.35 3.336 (4) 169
C11—H11⋯O1i 0.95 2.29 3.229 (3) 170
C3—H3⋯Cg1ii 0.95 2.96 3.652 (3) 131
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{3\over 2}}, y, -z-{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Derivatives of chalcone exhibit nonlinear optical (NLO) properties (Agrinskaya et al., 1999; Patil et al., 2006; John Kiran et al., 2007). We report here the crystal structure of the title compound (Fig 1), which crystallizes in a centrosymmetric space group and this precludes the presence of second-order NLO properties.

Bond lengths and angles in the title molecule have normal values (Allen et al., 1987). The dihedral angle between the benzene rings is 6.0 (1)°. The dibromoethane fragment of the propan-1-one unit is diordered over two positions.

The crystal packing is (Fig.2) stabilized by intermolecular C—H···O and weak C—H···π interactions involving the C1–C6 benzene ring (centroid Cg1). In addition, Br2···Cl2(-1+x,y,z) [3.505 (2) Å], Br1A···Cl2(-1+x,y,z) [3.576 (6) Å] and Cl1···F1(1-x,1-y,-z) [3.176 (2) Å] short contacts are oberved in the crystal structure.

Related literature top

For related literature, see: Agrinskaya et al. (1999); Patil et al. (2006); John Kiran et al. (2007). For bond-length data, see: Allen et al. (1987). For the preparation, see: Shivarama Holla et al. 2006). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

1-(2,4-Dichloro-5-fluorophenyl)-3-phenylprop-2-en-1-one (1 mmol) was prepared by a literature procedure (Shivarama Holla et al., 2006). To a solution of 1-(2,4-dichloro-5-fluorophenyl)-3-phenylprop-2-en-1-one) (1 mmol) in chloroform (25 ml), bromine (1 mmol) was added slowly with stirring. After the completion of addition the reaction mixture was stirred for 24 h. Excess chloroform was distilled off and crude solid was filtered and dried. The precipitated compound was recrystallized from acetone.

Refinement top

The dibromoethane linkage is disordered over two positions with refined occupancies of 0.834 (6):0.166 (6). The C-Br distances were restrained to be equal, and Csp2-Csp3 and Csp3-Csp3 distances involving the disordered atoms were restrained to 1.50 (1) and 1.54 (1) Å, respectively. The Uij components of disordered atoms were restrained to approximate isotropic behaviour. H atoms were positioned geometrically [C—H = 0.95 or 1.00 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Only the major disorder component is shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Short intra- and intermolecular contacts and hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
2,3-Dibromo-1-(2,4-dichloro-5-fluorophenyl)-3-phenylpropan-1-one top
Crystal data top
C15H9Br2Cl2FOF(000) = 1760
Mr = 454.94Dx = 1.957 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4782 reflections
a = 7.1232 (1) Åθ = 2.8–28.1°
b = 10.0757 (2) ŵ = 5.60 mm1
c = 43.0262 (7) ÅT = 100 K
V = 3088.04 (9) Å3Block, colourless
Z = 80.40 × 0.24 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5857 independent reflections
Radiation source: fine-focus sealed tube3681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 33.2°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 108
Tmin = 0.211, Tmax = 0.508k = 1515
26343 measured reflectionsl = 5266
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0309P)2 + 2.3603P]
where P = (Fo2 + 2Fc2)/3
5857 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.77 e Å3
60 restraintsΔρmin = 0.76 e Å3
Crystal data top
C15H9Br2Cl2FOV = 3088.04 (9) Å3
Mr = 454.94Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1232 (1) ŵ = 5.60 mm1
b = 10.0757 (2) ÅT = 100 K
c = 43.0262 (7) Å0.40 × 0.24 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5857 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3681 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.508Rint = 0.056
26343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04160 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.99Δρmax = 0.77 e Å3
5857 reflectionsΔρmin = 0.76 e Å3
227 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low–temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.58123 (10)0.31692 (7)0.003788 (15)0.02739 (16)
Cl20.62659 (10)0.10513 (7)0.070833 (16)0.02701 (16)
F10.3512 (3)0.42768 (15)0.04559 (4)0.0314 (4)
O10.3888 (3)0.05963 (18)0.12256 (4)0.0211 (4)
C10.0038 (4)0.0604 (3)0.21381 (6)0.0229 (6)
H10.04750.02860.21510.028*
C20.0915 (4)0.1152 (3)0.23859 (6)0.0243 (6)
H20.11470.06350.25670.029*
C30.1533 (4)0.2449 (3)0.23723 (7)0.0273 (6)
H30.21970.28220.25430.033*
C40.1181 (4)0.3209 (3)0.21087 (7)0.0260 (6)
H40.15810.41070.21000.031*
C50.0250 (5)0.2651 (3)0.18597 (7)0.0290 (7)
H50.00250.31660.16790.035*
C60.0365 (4)0.1337 (3)0.18715 (6)0.0265 (6)
C90.3635 (4)0.0567 (3)0.11688 (6)0.0189 (5)
C100.4255 (4)0.1189 (2)0.08738 (6)0.0176 (5)
C110.3646 (4)0.2472 (3)0.07982 (6)0.0222 (6)
H110.28830.29490.09410.027*
C120.4138 (4)0.3047 (3)0.05211 (6)0.0216 (6)
C130.5258 (4)0.2405 (3)0.03074 (6)0.0196 (5)
C140.5896 (4)0.1134 (3)0.03752 (6)0.0203 (5)
H140.66730.06770.02310.024*
C150.5397 (4)0.0535 (2)0.06529 (6)0.0185 (5)
Br10.4779 (3)0.1813 (3)0.17334 (5)0.0279 (4)0.834 (6)
Br20.06956 (14)0.02708 (17)0.12693 (3)0.0296 (2)0.834 (6)
C70.1226 (5)0.0653 (3)0.15969 (7)0.0194 (8)0.834 (6)
H70.17720.02090.16680.023*0.834 (6)
C80.2737 (5)0.1420 (4)0.14272 (7)0.0190 (8)0.834 (6)
H80.22160.22610.13390.023*0.834 (6)
Br1A0.0440 (7)0.0638 (6)0.11951 (14)0.0265 (8)0.166 (6)
Br2A0.4743 (16)0.1862 (16)0.1704 (2)0.0222 (16)0.166 (6)
C7A0.2193 (14)0.0999 (16)0.1700 (3)0.028 (5)0.166 (6)
H7A0.24050.00250.17280.033*0.166 (6)
C8A0.2088 (11)0.1248 (14)0.1348 (3)0.015 (4)0.166 (6)
H8A0.21900.22250.13110.018*0.166 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0264 (4)0.0359 (4)0.0198 (3)0.0014 (3)0.0055 (3)0.0042 (3)
Cl20.0290 (4)0.0221 (3)0.0300 (3)0.0083 (3)0.0061 (3)0.0018 (3)
F10.0442 (11)0.0200 (8)0.0302 (9)0.0078 (8)0.0112 (8)0.0069 (7)
O10.0246 (11)0.0173 (9)0.0214 (9)0.0019 (8)0.0011 (8)0.0018 (7)
C10.0237 (15)0.0222 (13)0.0229 (13)0.0004 (12)0.0020 (11)0.0000 (10)
C20.0224 (15)0.0293 (15)0.0212 (13)0.0056 (12)0.0026 (11)0.0010 (11)
C30.0224 (16)0.0323 (16)0.0271 (15)0.0049 (13)0.0061 (12)0.0067 (12)
C40.0217 (15)0.0226 (14)0.0338 (15)0.0022 (12)0.0043 (12)0.0038 (12)
C50.0381 (19)0.0219 (14)0.0270 (15)0.0049 (13)0.0102 (13)0.0045 (11)
C60.0322 (18)0.0248 (14)0.0226 (13)0.0052 (13)0.0082 (12)0.0013 (11)
C90.0190 (14)0.0173 (12)0.0203 (13)0.0010 (11)0.0019 (10)0.0016 (10)
C100.0183 (13)0.0148 (12)0.0198 (12)0.0012 (10)0.0021 (10)0.0022 (9)
C110.0250 (15)0.0176 (13)0.0239 (13)0.0009 (12)0.0051 (11)0.0021 (10)
C120.0237 (14)0.0165 (12)0.0245 (13)0.0004 (11)0.0011 (11)0.0019 (10)
C130.0182 (14)0.0249 (14)0.0158 (12)0.0051 (11)0.0010 (10)0.0012 (10)
C140.0171 (13)0.0245 (14)0.0192 (12)0.0008 (11)0.0025 (10)0.0054 (10)
C150.0144 (13)0.0165 (12)0.0244 (13)0.0008 (10)0.0013 (10)0.0034 (10)
Br10.0181 (5)0.0296 (5)0.0359 (9)0.0023 (4)0.0012 (5)0.0105 (7)
Br20.0212 (3)0.0379 (5)0.0296 (4)0.0013 (3)0.0041 (3)0.0111 (3)
C70.0208 (18)0.0182 (15)0.0191 (15)0.0007 (13)0.0027 (13)0.0016 (12)
C80.022 (2)0.0175 (16)0.0173 (17)0.0011 (15)0.0004 (15)0.0024 (12)
Br1A0.0242 (14)0.0302 (17)0.0252 (16)0.0071 (12)0.0074 (11)0.0019 (12)
Br2A0.030 (3)0.031 (3)0.0061 (13)0.008 (2)0.0041 (14)0.0099 (13)
C7A0.027 (8)0.021 (7)0.035 (8)0.010 (6)0.010 (6)0.006 (6)
C8A0.015 (7)0.014 (7)0.016 (7)0.005 (6)0.007 (5)0.003 (5)
Geometric parameters (Å, º) top
Cl1—C131.719 (3)C9—C81.544 (4)
Cl2—C151.731 (3)C10—C111.402 (4)
F1—C121.346 (3)C10—C151.414 (4)
O1—C91.211 (3)C11—C121.371 (4)
C1—C21.380 (4)C11—H110.95
C1—C61.384 (4)C12—C131.379 (4)
C1—H10.95C13—C141.390 (4)
C2—C31.380 (4)C14—C151.385 (4)
C2—H20.95C14—H140.95
C3—C41.391 (4)Br1—C82.002 (4)
C3—H30.95Br2—C72.002 (3)
C4—C51.380 (4)C7—C81.513 (4)
C4—H40.95C7—H71.00
C5—C61.395 (4)C8—H81.00
C5—H50.95Br1A—C8A2.013 (8)
C6—C71.499 (4)Br2A—C7A2.014 (8)
C6—C7A1.536 (9)C7A—C8A1.535 (9)
C9—C101.483 (4)C7A—H7A1.00
C9—C8A1.509 (9)C8A—H8A1.00
C2—C1—C6120.6 (3)C12—C13—C14118.8 (2)
C2—C1—H1119.7C12—C13—Cl1119.9 (2)
C6—C1—H1119.7C14—C13—Cl1121.3 (2)
C1—C2—C3120.2 (3)C15—C14—C13119.9 (2)
C1—C2—H2119.9C15—C14—H14120.0
C3—C2—H2119.9C13—C14—H14120.0
C2—C3—C4119.9 (3)C14—C15—C10121.6 (2)
C2—C3—H3120.1C14—C15—Cl2115.5 (2)
C4—C3—H3120.1C10—C15—Cl2122.9 (2)
C5—C4—C3119.7 (3)C6—C7—C8115.9 (3)
C5—C4—H4120.2C6—C7—Br2111.3 (2)
C3—C4—H4120.2C8—C7—Br2104.2 (2)
C4—C5—C6120.6 (3)C6—C7—H7108.4
C4—C5—H5119.7C8—C7—H7108.4
C6—C5—H5119.7Br2—C7—H7108.4
C1—C6—C5118.9 (3)C7—C8—C9110.9 (3)
C1—C6—C7118.5 (3)C7—C8—Br1107.5 (2)
C5—C6—C7122.4 (3)C9—C8—Br1106.5 (2)
C1—C6—C7A115.1 (6)C7—C8—H8110.6
C5—C6—C7A117.3 (6)C9—C8—H8110.6
O1—C9—C10122.5 (2)Br1—C8—H8110.6
O1—C9—C8A116.5 (6)C8A—C7A—C6113.4 (8)
C10—C9—C8A117.6 (6)C8A—C7A—Br2A89.1 (7)
O1—C9—C8117.1 (2)C6—C7A—Br2A131.6 (9)
C10—C9—C8120.3 (2)C8A—C7A—H7A106.7
C11—C10—C15116.9 (2)C6—C7A—H7A106.7
C11—C10—C9119.7 (2)Br2A—C7A—H7A106.7
C15—C10—C9123.4 (2)C9—C8A—C7A113.2 (8)
C12—C11—C10120.8 (2)C9—C8A—Br1A110.3 (6)
C12—C11—H11119.6C7A—C8A—Br1A108.4 (8)
C10—C11—H11119.6C9—C8A—H8A108.3
F1—C12—C11119.0 (2)C7A—C8A—H8A108.3
F1—C12—C13119.0 (2)Br1A—C8A—H8A108.3
C11—C12—C13122.0 (2)
C6—C1—C2—C30.9 (4)C1—C6—C7—C8137.6 (3)
C1—C2—C3—C40.5 (4)C5—C6—C7—C847.5 (4)
C2—C3—C4—C51.3 (4)C7A—C6—C7—C844.3 (10)
C3—C4—C5—C60.9 (5)C1—C6—C7—Br2103.6 (3)
C2—C1—C6—C51.4 (5)C5—C6—C7—Br271.2 (4)
C2—C1—C6—C7173.7 (3)C7A—C6—C7—Br2163.1 (11)
C2—C1—C6—C7A148.2 (6)C6—C7—C8—C9174.9 (3)
C4—C5—C6—C10.5 (5)Br2—C7—C8—C962.5 (3)
C4—C5—C6—C7174.4 (3)C6—C7—C8—Br158.9 (3)
C4—C5—C6—C7A146.6 (6)Br2—C7—C8—Br1178.49 (17)
O1—C9—C10—C11169.1 (3)O1—C9—C8—C738.7 (4)
C8A—C9—C10—C1110.9 (5)C10—C9—C8—C7145.0 (3)
C8—C9—C10—C1114.8 (4)C8A—C9—C8—C755.5 (16)
O1—C9—C10—C158.5 (4)O1—C9—C8—Br177.9 (3)
C8A—C9—C10—C15166.7 (4)C10—C9—C8—Br198.3 (3)
C8—C9—C10—C15167.6 (3)C8A—C9—C8—Br1172.1 (18)
C15—C10—C11—C120.4 (4)C1—C6—C7A—C8A151.0 (9)
C9—C10—C11—C12177.3 (3)C5—C6—C7A—C8A61.6 (12)
C10—C11—C12—F1179.5 (2)C7—C6—C7A—C8A46.7 (9)
C10—C11—C12—C130.7 (4)C1—C6—C7A—Br2A97.9 (12)
F1—C12—C13—C14179.8 (2)C5—C6—C7A—Br2A49.5 (13)
C11—C12—C13—C140.3 (4)C7—C6—C7A—Br2A157.8 (19)
F1—C12—C13—Cl10.7 (4)O1—C9—C8A—C7A49.1 (10)
C11—C12—C13—Cl1179.4 (2)C10—C9—C8A—C7A151.4 (8)
C12—C13—C14—C150.3 (4)C8—C9—C8A—C7A48.3 (12)
Cl1—C13—C14—C15178.8 (2)O1—C9—C8A—Br1A72.6 (8)
C13—C14—C15—C100.5 (4)C10—C9—C8A—Br1A86.9 (8)
C13—C14—C15—Cl2179.5 (2)C8—C9—C8A—Br1A170 (2)
C11—C10—C15—C140.2 (4)C6—C7A—C8A—C9163.6 (8)
C9—C10—C15—C14177.8 (3)Br2A—C7A—C8A—C960.7 (10)
C11—C10—C15—Cl2179.9 (2)C6—C7A—C8A—Br1A40.8 (13)
C9—C10—C15—Cl22.2 (4)Br2A—C7A—C8A—Br1A176.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.453.392 (4)170
C8—H8···O1i1.002.353.336 (4)169
C11—H11···O1i0.952.293.229 (3)170
C3—H3···Cg1ii0.952.963.652 (3)131
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H9Br2Cl2FO
Mr454.94
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.1232 (1), 10.0757 (2), 43.0262 (7)
V3)3088.04 (9)
Z8
Radiation typeMo Kα
µ (mm1)5.60
Crystal size (mm)0.40 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.211, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
26343, 5857, 3681
Rint0.056
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.089, 0.99
No. of reflections5857
No. of parameters227
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.76

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.453.392 (4)170
C8—H8···O1i1.002.353.336 (4)169
C11—H11···O1i0.952.293.229 (3)170
C3—H3···Cg1ii0.952.963.652 (3)131
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x3/2, y, z1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. HKF and IAR also thank the Malaysian Government and Universiti Sains Malaysia for the FRGS grant No. 203/PFIZIK/671064. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work was also supported by the Department of Science and Technology (DST), Government of India, grant No. SR/S2/LOP-17/2006.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohn Kiran, A., Mithun, A., Shivarama Holla, B., Shashikala, H. D., Umesh, G. & Chandrasekharan, K. (2007). Opt. Commun. 269, 235–240.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.–K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem. 41, 657–663.  CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds