organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Mesitylmethyl­sulfan­yl)pyridine N-oxide–18-crown-6 (2/1)

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamil Nadu, India, bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, cDepartment of Physics, Popes College, Sawyerpuram 628 251, Tamilnadu, India, and dInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 23 April 2008; accepted 28 April 2008; online 3 May 2008)

In the title compound, 2C15H17NOS·C12H24O6, the asymmetric unit consists of one N-oxide derivative and one-half of the 18-crown-6 ether, which lies on an inversion centre. In the crown ether, the O—C—C—O torsion angles indicate a gauche conformation of the ethyl­eneoxy units, while the C—O—C—C torsion angles indicate planarity of these segments. In the N-oxide unit, the dihedral angle between the pyridine and benzene rings is 85.88 (12)°. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the biological activities of N-oxide derivatives, see: Bovin et al.(1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr. 129, 145-150.]); Katsuyuki et al.(1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Leonard et al.(1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]); Lobana & Bhatia (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Symons & West (1985[Symons, M. C. R. & West, D.-X. (1985). J Chem Soc Dalton Trans. pp. 379-381.]). For related structures, see: Jebas et al.(2005[Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677-o2678.]); Ravindran Durai Nayagam et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]).

[Scheme 1]

Experimental

Crystal data
  • 2C15H17NOS·C12H24O6

  • Mr = 783.02

  • Monoclinic, P 21 /c

  • a = 8.050 (2) Å

  • b = 18.1903 (18) Å

  • c = 14.424 (4) Å

  • β = 93.475 (14)°

  • V = 2108.3 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.57 mm−1

  • T = 298 (2) K

  • 0.26 × 0.22 × 0.19 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.95, Tmax = 0.99 (expected range = 0.712–0.742)

  • 3999 measured reflections

  • 3999 independent reflections

  • 2846 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.132

  • S = 1.02

  • 3999 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O23i 0.93 2.50 3.187 (3) 131
C16—H16A⋯O7ii 0.96 2.38 3.257 (4) 152
C27—H27ACg1iii 0.97 2.78 3.723 (4) 163
C21—H21ACg2 0.97 2.80 3.693 (3) 153
C2—H2⋯Cg2iv 0.93 2.90 3.732 (3) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1. Cg1 and Cg2 are the centroids of the N6/C1–C5 and C10–C15 rings, respectively.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al.,1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al.1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al.,1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The asymmetric unit of the title compound consists of one mono(1-oxopyridine 2-sulfanylmethyl)mesitylene molecule and one-half of a 18-crown 6-ether molecule, the other half being inversion related. The bond lengths and angles of the N-oxide moiety agree well with those observed in other N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran et al., 2008). The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N-oxides (Allen et al.,1987).

The oxopyridinium and benzene rings are planar to within ±0.006 (2) Å and ±0.012 (2) Å, respectively, and they form a dihedral angle of 85.88 (12)°, indicating that both the rings are perpendicular to each other. Atom O7 deviates from the plane of the pyridinium ring by 0.006 (2) Å.

The crystal packing is consolidated by weak C—H···π interactions involving the oxopyridinium (N6/C1–C5) and benzene rings (C10–15), and C—H···O hydrogen bonds (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For the biological activities of N-oxide derivatives, see: Bovin et al.(1992); Katsuyuki et al.(1991); Leonard et al.(1955); Lobana & Bhatia (1989); Symons & West (1985). For related structures, see: Jebas et al.(2005); Ravindran Durai Nayagam et al.(2008). Cg1 and Cg2 are the centroids of the N6/C1–C5 and C10–C15 rings, respectively.

For related literature, see: Allen et al. (1987).

Experimental top

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol), 1-hydroxypyridine-2-thione sodium salt (0.1491 mmol) and 18-crown-6-ether (0.250 g) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off and dried. The compound was recrystallized from a chloroform-methanol (1:1 v/v) solution.

Refinement top

H atoms were positioned geometrically [C-H = 0.93 (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Atoms labelled with the suffix A are generated by the symmetry operation (-x, 1-y, 1-z).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-(Mesitylmethylsulfanyl)pyridine N-oxide–18-crown-6 (1/1) top
Crystal data top
2C15H17NOS·C12H24O6F(000) = 840
Mr = 783.02Dx = 1.233 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.050 (2) Åθ = 26–41°
b = 18.1903 (18) ŵ = 1.57 mm1
c = 14.424 (4) ÅT = 298 K
β = 93.475 (14)°Block, colourless
V = 2108.3 (8) Å30.26 × 0.22 × 0.19 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2846 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0
Graphite monochromatorθmax = 70.1°, θmin = 3.9°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 022
Tmin = 0.95, Tmax = 0.99l = 1717
3999 measured reflections3 standard reflections every 60 min
3999 independent reflections intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3138P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.21 e Å3
3999 reflectionsΔρmin = 0.25 e Å3
247 parameters
Crystal data top
2C15H17NOS·C12H24O6V = 2108.3 (8) Å3
Mr = 783.02Z = 2
Monoclinic, P21/cCu Kα radiation
a = 8.050 (2) ŵ = 1.57 mm1
b = 18.1903 (18) ÅT = 298 K
c = 14.424 (4) Å0.26 × 0.22 × 0.19 mm
β = 93.475 (14)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2846 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0
Tmin = 0.95, Tmax = 0.993 standard reflections every 60 min
3999 measured reflections intensity decay: 3%
3999 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3999 reflectionsΔρmin = 0.25 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7135 (3)0.08450 (12)0.27904 (15)0.0427 (5)
C20.7560 (3)0.01163 (13)0.29202 (16)0.0478 (6)
H20.71620.01440.34150.057*
C30.8569 (3)0.02246 (14)0.23183 (18)0.0571 (7)
H30.88650.07150.24110.069*
C40.9142 (4)0.01540 (15)0.1584 (2)0.0637 (7)
H40.98130.00770.11690.076*
C50.8717 (3)0.08740 (16)0.1468 (2)0.0637 (7)
H50.91060.11340.0970.076*
N60.7742 (3)0.12176 (11)0.20600 (15)0.0532 (5)
O70.7329 (3)0.19062 (10)0.19510 (16)0.0837 (7)
S80.58479 (9)0.13969 (3)0.34265 (5)0.0552 (2)
C90.5267 (3)0.07413 (12)0.43059 (17)0.0498 (6)
H9A0.45870.03530.4020.06*
H9B0.62560.05210.46060.06*
C100.4303 (3)0.11466 (12)0.50103 (16)0.0437 (5)
C110.5156 (3)0.15214 (12)0.57329 (17)0.0459 (5)
C120.4274 (3)0.19058 (13)0.63763 (17)0.0502 (6)
H120.48530.21640.68490.06*
C130.2556 (3)0.19120 (13)0.63282 (17)0.0494 (6)
C140.1730 (3)0.15298 (13)0.56197 (18)0.0510 (6)
H140.05730.15210.55910.061*
C150.2554 (3)0.11556 (13)0.49443 (17)0.0481 (6)
C160.7035 (3)0.15389 (16)0.5834 (2)0.0643 (7)
H16A0.73870.18980.62920.096*
H16B0.74660.16660.52490.096*
H16C0.74440.10630.60250.096*
C170.1631 (4)0.23629 (17)0.7009 (2)0.0729 (9)
H17A0.22880.23990.75850.109*
H17B0.0590.2130.71150.109*
H17C0.14280.28460.67590.109*
C180.1546 (4)0.07817 (17)0.4161 (2)0.0760 (9)
H18A0.16690.02580.42180.114*
H18B0.19350.09390.35770.114*
H18C0.03940.0910.4190.114*
C190.3730 (4)0.40558 (17)0.5469 (2)0.0732 (8)
H19A0.41340.42710.4910.088*
H19B0.4460.36520.56570.088*
O200.2098 (2)0.37888 (10)0.52814 (12)0.0592 (5)
C210.2021 (4)0.32669 (14)0.45558 (19)0.0601 (7)
H21A0.27240.28490.47270.072*
H21B0.24210.34850.39970.072*
C220.0265 (4)0.30186 (14)0.43774 (19)0.0604 (7)
H22A0.02230.25970.39660.072*
H22B0.020.28770.49560.072*
O230.0651 (2)0.36052 (10)0.39661 (13)0.0635 (5)
C240.2386 (4)0.34718 (16)0.3842 (2)0.0701 (8)
H24A0.28320.33470.44320.084*
H24B0.25960.30640.34170.084*
C250.3196 (4)0.41482 (17)0.3459 (2)0.0710 (8)
H25A0.2670.42980.29010.085*
H25B0.43620.40510.32940.085*
O260.3054 (2)0.47147 (10)0.41232 (12)0.0593 (5)
C270.3763 (4)0.53832 (17)0.3785 (2)0.0751 (9)
H27A0.49040.52980.35550.09*
H27B0.31460.55620.32740.09*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (12)0.0398 (11)0.0441 (12)0.0009 (10)0.0063 (10)0.0024 (10)
C20.0595 (15)0.0396 (12)0.0446 (13)0.0021 (11)0.0072 (11)0.0024 (10)
C30.0721 (18)0.0430 (13)0.0575 (16)0.0097 (12)0.0141 (13)0.0013 (11)
C40.0701 (18)0.0579 (16)0.0655 (18)0.0079 (14)0.0232 (14)0.0043 (14)
C50.0668 (17)0.0661 (17)0.0609 (16)0.0010 (14)0.0273 (14)0.0083 (14)
N60.0555 (12)0.0434 (11)0.0623 (13)0.0026 (9)0.0160 (10)0.0114 (9)
O70.1030 (17)0.0471 (11)0.1058 (17)0.0174 (11)0.0451 (13)0.0281 (11)
S80.0691 (4)0.0367 (3)0.0622 (4)0.0080 (3)0.0234 (3)0.0054 (3)
C90.0619 (15)0.0363 (12)0.0526 (14)0.0007 (11)0.0147 (12)0.0009 (10)
C100.0471 (13)0.0355 (11)0.0494 (13)0.0004 (9)0.0103 (10)0.0027 (10)
C110.0416 (12)0.0413 (12)0.0554 (14)0.0010 (10)0.0094 (10)0.0009 (10)
C120.0544 (15)0.0465 (13)0.0499 (14)0.0031 (11)0.0050 (11)0.0025 (11)
C130.0551 (15)0.0455 (13)0.0494 (14)0.0106 (11)0.0180 (11)0.0104 (11)
C140.0405 (12)0.0496 (14)0.0639 (16)0.0039 (11)0.0109 (11)0.0135 (12)
C150.0473 (13)0.0403 (12)0.0565 (14)0.0030 (10)0.0026 (11)0.0067 (11)
C160.0475 (15)0.0646 (17)0.0806 (19)0.0003 (13)0.0036 (13)0.0121 (15)
C170.084 (2)0.0733 (19)0.0652 (18)0.0222 (16)0.0339 (16)0.0082 (15)
C180.0627 (18)0.073 (2)0.090 (2)0.0042 (15)0.0110 (16)0.0117 (18)
C190.0583 (17)0.0603 (18)0.101 (2)0.0089 (14)0.0081 (16)0.0113 (17)
O200.0580 (11)0.0578 (11)0.0633 (11)0.0006 (8)0.0147 (9)0.0013 (9)
C210.0724 (18)0.0469 (14)0.0634 (17)0.0101 (13)0.0246 (14)0.0093 (12)
C220.082 (2)0.0395 (13)0.0613 (16)0.0011 (13)0.0222 (14)0.0054 (12)
O230.0668 (12)0.0476 (10)0.0768 (13)0.0066 (9)0.0089 (10)0.0110 (9)
C240.073 (2)0.0585 (17)0.079 (2)0.0173 (15)0.0043 (16)0.0082 (15)
C250.0691 (19)0.0725 (19)0.0694 (19)0.0102 (16)0.0117 (15)0.0074 (16)
O260.0608 (11)0.0588 (11)0.0574 (11)0.0024 (9)0.0048 (9)0.0023 (9)
C270.0657 (19)0.072 (2)0.085 (2)0.0026 (15)0.0183 (16)0.0099 (17)
Geometric parameters (Å, º) top
C1—N61.368 (3)C16—H16C0.96
C1—C21.379 (3)C17—H17A0.96
C1—S81.743 (2)C17—H17B0.96
C2—C31.373 (3)C17—H17C0.96
C2—H20.93C18—H18A0.96
C3—C41.367 (4)C18—H18B0.96
C3—H30.93C18—H18C0.96
C4—C51.362 (4)C19—O201.411 (3)
C4—H40.93C19—C27i1.482 (4)
C5—N61.348 (3)C19—H19A0.97
C5—H50.93C19—H19B0.97
N6—O71.303 (3)O20—C211.412 (3)
S8—C91.823 (2)C21—C221.491 (4)
C9—C101.508 (3)C21—H21A0.97
C9—H9A0.97C21—H21B0.97
C9—H9B0.97C22—O231.408 (3)
C10—C111.392 (3)C22—H22A0.97
C10—C151.406 (3)C22—H22B0.97
C11—C121.391 (3)O23—C241.418 (3)
C11—C161.510 (3)C24—C251.483 (4)
C12—C131.380 (3)C24—H24A0.97
C12—H120.93C24—H24B0.97
C13—C141.374 (4)C25—O261.407 (3)
C13—C171.509 (3)C25—H25A0.97
C14—C151.389 (3)C25—H25B0.97
C14—H140.93O26—C271.417 (3)
C15—C181.512 (4)C27—C19i1.482 (4)
C16—H16A0.96C27—H27A0.97
C16—H16B0.96C27—H27B0.97
N6—C1—C2118.9 (2)C13—C17—H17B109.5
N6—C1—S8111.80 (17)H17A—C17—H17B109.5
C2—C1—S8129.24 (18)C13—C17—H17C109.5
C3—C2—C1120.0 (2)H17A—C17—H17C109.5
C3—C2—H2120H17B—C17—H17C109.5
C1—C2—H2120C15—C18—H18A109.5
C4—C3—C2120.2 (2)C15—C18—H18B109.5
C4—C3—H3119.9H18A—C18—H18B109.5
C2—C3—H3119.9C15—C18—H18C109.5
C5—C4—C3119.1 (2)H18A—C18—H18C109.5
C5—C4—H4120.5H18B—C18—H18C109.5
C3—C4—H4120.5O20—C19—C27i110.6 (2)
N6—C5—C4121.3 (2)O20—C19—H19A109.5
N6—C5—H5119.4C27i—C19—H19A109.5
C4—C5—H5119.4O20—C19—H19B109.5
O7—N6—C5121.5 (2)C27i—C19—H19B109.5
O7—N6—C1118.0 (2)H19A—C19—H19B108.1
C5—N6—C1120.5 (2)C19—O20—C21111.8 (2)
C1—S8—C9100.10 (11)O20—C21—C22109.3 (2)
C10—C9—S8108.26 (15)O20—C21—H21A109.8
C10—C9—H9A110C22—C21—H21A109.8
S8—C9—H9A110O20—C21—H21B109.8
C10—C9—H9B110C22—C21—H21B109.8
S8—C9—H9B110H21A—C21—H21B108.3
H9A—C9—H9B108.4O23—C22—C21108.1 (2)
C11—C10—C15119.5 (2)O23—C22—H22A110.1
C11—C10—C9119.6 (2)C21—C22—H22A110.1
C15—C10—C9120.9 (2)O23—C22—H22B110.1
C12—C11—C10119.8 (2)C21—C22—H22B110.1
C12—C11—C16118.3 (2)H22A—C22—H22B108.4
C10—C11—C16121.9 (2)C22—O23—C24114.2 (2)
C13—C12—C11121.4 (2)O23—C24—C25108.2 (2)
C13—C12—H12119.3O23—C24—H24A110.1
C11—C12—H12119.3C25—C24—H24A110.1
C14—C13—C12118.1 (2)O23—C24—H24B110.1
C14—C13—C17121.6 (2)C25—C24—H24B110.1
C12—C13—C17120.2 (3)H24A—C24—H24B108.4
C13—C14—C15122.7 (2)O26—C25—C24109.7 (2)
C13—C14—H14118.7O26—C25—H25A109.7
C15—C14—H14118.7C24—C25—H25A109.7
C14—C15—C10118.5 (2)O26—C25—H25B109.7
C14—C15—C18119.1 (2)C24—C25—H25B109.7
C10—C15—C18122.4 (2)H25A—C25—H25B108.2
C11—C16—H16A109.5C25—O26—C27112.3 (2)
C11—C16—H16B109.5O26—C27—C19i110.6 (2)
H16A—C16—H16B109.5O26—C27—H27A109.5
C11—C16—H16C109.5C19i—C27—H27A109.5
H16A—C16—H16C109.5O26—C27—H27B109.5
H16B—C16—H16C109.5C19i—C27—H27B109.5
C13—C17—H17A109.5H27A—C27—H27B108.1
N6—C1—C2—C30.3 (4)C10—C11—C12—C131.5 (4)
S8—C1—C2—C3178.2 (2)C16—C11—C12—C13179.8 (2)
C1—C2—C3—C40.7 (4)C11—C12—C13—C140.4 (4)
C2—C3—C4—C51.0 (4)C11—C12—C13—C17177.1 (2)
C3—C4—C5—N60.2 (5)C12—C13—C14—C151.6 (4)
C4—C5—N6—O7179.9 (3)C17—C13—C14—C15175.1 (2)
C4—C5—N6—C10.8 (4)C13—C14—C15—C102.4 (3)
C2—C1—N6—O7179.8 (2)C13—C14—C15—C18176.9 (2)
S8—C1—N6—O71.4 (3)C11—C10—C15—C141.3 (3)
C2—C1—N6—C51.1 (4)C9—C10—C15—C14179.2 (2)
S8—C1—N6—C5177.7 (2)C11—C10—C15—C18178.0 (2)
N6—C1—S8—C9179.41 (18)C9—C10—C15—C181.6 (4)
C2—C1—S8—C90.8 (3)C27i—C19—O20—C21178.4 (2)
C1—S8—C9—C10172.97 (17)C19—O20—C21—C22178.8 (2)
S8—C9—C10—C1183.8 (2)O20—C21—C22—O2370.4 (3)
S8—C9—C10—C1595.8 (2)C21—C22—O23—C24174.0 (2)
C15—C10—C11—C120.6 (3)C22—O23—C24—C25176.6 (2)
C9—C10—C11—C12179.0 (2)O23—C24—C25—O2666.6 (3)
C15—C10—C11—C16179.3 (2)C24—C25—O26—C27178.2 (3)
C9—C10—C11—C160.3 (3)C25—O26—C27—C19i174.7 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O23ii0.932.503.187 (3)131
C16—H16A···O7iii0.962.383.257 (4)152
C27—H27A···Cg1iv0.972.783.723 (4)163
C21—H21A···Cg20.972.803.693 (3)153
C2—H2···Cg2v0.932.903.732 (3)150
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula2C15H17NOS·C12H24O6
Mr783.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.050 (2), 18.1903 (18), 14.424 (4)
β (°) 93.475 (14)
V3)2108.3 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.57
Crystal size (mm)0.26 × 0.22 × 0.19
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.95, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
3999, 3999, 2846
Rint0
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.03
No. of reflections3999
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O23i0.932.503.187 (3)131
C16—H16A···O7ii0.962.383.257 (4)152
C27—H27A···Cg1iii0.972.783.723 (4)163
C21—H21A···Cg20.972.803.693 (3)153
C2—H2···Cg2iv0.932.903.732 (3)150
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

BRDN thanks the University Grants Commission, India, for a Teacher Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr. 129, 145–150.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationJebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J Chem Soc Dalton Trans. pp. 379–381.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds