organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Methyl-2-[(R)-1-phenyl­ethyl­imino­meth­yl]phenol

aSchool of Science, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
*Correspondence e-mail: fangfangdang@yahoo.com.cn

(Received 23 April 2008; accepted 5 May 2008; online 14 May 2008)

In the title Schiff base, C16H17NO, the dihedral angle between the two aromatic rings is 63.59 (2)°. A strong intra­molecular O—H⋯N hydrogen bond is observed between the hydroxyl group and the imine N atom.

Related literature

For photochromism and thermochromism of Schiff bases, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2043.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Monoclinic, C 2

  • a = 20.342 (8) Å

  • b = 5.911 (2) Å

  • c = 14.551 (5) Å

  • β = 128.585 (4)°

  • V = 1367.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 (2) K

  • 0.35 × 0.34 × 0.26 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.986

  • 5952 measured reflections

  • 1726 independent reflections

  • 1609 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.100

  • S = 1.08

  • 1726 reflections

  • 166 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.613 (2) 147

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds presenting photochromism, a reversible colour change brought about in at least one direction, by the action of electromagnetic radiation, attract considerable attention from various fields of chemistry, physics and materials science as potential candidates for practical applications. For a long time, the Schiff bases of salicylaldehyde with aromatic amines (anils or N-salicylideneaniline derivatives) are recognized as such compounds, which undergo enol-keto tautomerism and present common features in their structures and reaction mechanisms. The Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964). The tautomerism involves proton transfer from the hydroxylic oxygen to the imino nitrogen atom that occurs intramolecularly via a six-membered ring, with the keto species showing bathochromically shifted spectra. Continuing our studies on the relation between the Schiff base geometry in the crystalline state and photochromism and/or thermochromism, we report presently on the crystal structure of the title compound.

The structure of the title molecule is illustrated in Fig. 1. It is a typical salicylaldehyde Schiff base with normal geometric parameters. The C8?N1 bond show the expected double-bond character. The molecule is not planar. The dihedral angle between the two aromatic rings is 63.59 (2)°. A strong intramolecular O—H···N hydrogen bond is observed between the hydroxyl group and the imine N atom (Table 1).

Related literature top

For photochromism and thermochromism of Schiff bases, see: Cohen et al. (1964).

Experimental top

(R)-1-Phenylethanamine (0.02 mol, 2.42 g) and 2-hydroxy-5-methylbenzaldehyde (0.02 mol, 2.72 g) were dissolved in ethanol and the solution was refluxed for 3 h. After evaporation, a crude product was obtained which was recrystallized twice from ethanol to give a pure yellow product (yield 82.5%). Calculated for C16H17NO: C 80.30, H 7.16, N 5.85%; found: C 80.18, H 7.42, N 5.54%.

Refinement top

H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98%A and O—H = 0.82 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl, O). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(E)-4-Methyl-2-[(R)-1-phenylethyliminomethyl]phenol top
Crystal data top
C16H17NOF(000) = 512
Mr = 239.31Dx = 1.162 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1435 reflections
a = 20.342 (8) Åθ = 1.0–27.6°
b = 5.911 (2) ŵ = 0.07 mm1
c = 14.551 (5) ÅT = 296 K
β = 128.585 (4)°Block, yellow
V = 1367.7 (9) Å30.35 × 0.34 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1726 independent reflections
Radiation source: fine-focus sealed tube1609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2426
Tmin = 0.971, Tmax = 0.986k = 77
5952 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1688P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1726 reflectionsΔρmax = 0.16 e Å3
166 parametersΔρmin = 0.12 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (3)
Crystal data top
C16H17NOV = 1367.7 (9) Å3
Mr = 239.31Z = 4
Monoclinic, C2Mo Kα radiation
a = 20.342 (8) ŵ = 0.07 mm1
b = 5.911 (2) ÅT = 296 K
c = 14.551 (5) Å0.35 × 0.34 × 0.26 mm
β = 128.585 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
1726 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1609 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.986Rint = 0.034
5952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.100H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
1726 reflectionsΔρmin = 0.12 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40281 (8)0.3392 (2)0.02219 (12)0.0730 (4)
H10.44100.26530.03420.110*
N10.47315 (9)0.0034 (2)0.12256 (11)0.0538 (3)
C10.32941 (11)0.2272 (3)0.07580 (15)0.0532 (4)
C20.25597 (12)0.3196 (3)0.17537 (17)0.0641 (5)
H20.25770.45900.20350.077*
C30.18064 (12)0.2067 (4)0.23274 (16)0.0637 (5)
H30.13230.27250.29900.076*
C40.17441 (11)0.0028 (3)0.19481 (15)0.0573 (4)
C50.24764 (10)0.0946 (3)0.09567 (14)0.0525 (4)
H50.24510.23370.06820.063*
C60.32532 (10)0.0142 (3)0.03530 (13)0.0475 (3)
C70.09140 (12)0.1267 (4)0.2595 (2)0.0782 (6)
H7A0.10060.28600.25970.117*
H7B0.06740.09990.22100.117*
H7C0.05360.07290.33910.117*
C80.40074 (10)0.0940 (3)0.06644 (13)0.0509 (4)
H80.39590.23360.09120.061*
C90.54666 (10)0.1249 (3)0.22409 (14)0.0548 (4)
H90.52680.26030.23900.066*
C100.60292 (14)0.1982 (4)0.19397 (19)0.0727 (5)
H10A0.57400.30840.13200.109*
H10B0.61660.06920.16870.109*
H10C0.65370.26330.26220.109*
C110.58971 (10)0.0289 (3)0.33046 (13)0.0519 (4)
C120.62976 (13)0.2262 (4)0.33758 (17)0.0664 (5)
H120.63190.26230.27720.080*
C130.66655 (14)0.3697 (4)0.4330 (2)0.0802 (6)
H130.69360.50020.43660.096*
C140.66345 (14)0.3215 (5)0.52172 (19)0.0864 (7)
H140.68760.41930.58530.104*
C150.62443 (17)0.1278 (6)0.51633 (19)0.0894 (8)
H150.62260.09390.57710.107*
C160.58746 (13)0.0192 (4)0.42139 (16)0.0696 (5)
H160.56120.15020.41910.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0677 (7)0.0529 (7)0.0784 (9)0.0080 (6)0.0357 (7)0.0145 (7)
N10.0630 (8)0.0471 (7)0.0489 (6)0.0001 (6)0.0337 (6)0.0041 (6)
C10.0620 (9)0.0425 (8)0.0575 (8)0.0013 (7)0.0385 (7)0.0019 (7)
C20.0730 (10)0.0470 (9)0.0696 (10)0.0048 (9)0.0432 (9)0.0123 (9)
C30.0608 (9)0.0626 (11)0.0617 (10)0.0105 (9)0.0352 (8)0.0081 (9)
C40.0601 (9)0.0568 (9)0.0627 (9)0.0030 (8)0.0421 (8)0.0094 (8)
C50.0650 (9)0.0448 (8)0.0604 (9)0.0031 (7)0.0453 (8)0.0026 (7)
C60.0610 (8)0.0407 (7)0.0508 (7)0.0016 (6)0.0398 (7)0.0022 (6)
C70.0649 (10)0.0782 (15)0.0904 (13)0.0100 (11)0.0479 (10)0.0140 (12)
C80.0671 (9)0.0418 (7)0.0516 (8)0.0007 (7)0.0409 (7)0.0026 (7)
C90.0647 (9)0.0460 (8)0.0528 (8)0.0027 (7)0.0362 (7)0.0084 (7)
C100.0849 (12)0.0704 (12)0.0686 (11)0.0137 (11)0.0507 (10)0.0019 (10)
C110.0539 (8)0.0520 (9)0.0493 (7)0.0096 (7)0.0320 (6)0.0094 (7)
C120.0769 (11)0.0587 (10)0.0629 (10)0.0032 (9)0.0433 (9)0.0030 (9)
C130.0765 (12)0.0642 (12)0.0738 (12)0.0015 (11)0.0341 (10)0.0061 (11)
C140.0861 (14)0.0835 (16)0.0554 (10)0.0224 (13)0.0273 (10)0.0057 (11)
C150.1092 (17)0.1044 (19)0.0575 (11)0.0279 (16)0.0535 (12)0.0134 (13)
C160.0833 (12)0.0720 (12)0.0616 (9)0.0097 (10)0.0492 (9)0.0132 (10)
Geometric parameters (Å, º) top
O1—C11.350 (2)C8—H80.93
O1—H10.82C9—C111.516 (2)
N1—C81.274 (2)C9—C101.522 (3)
N1—C91.476 (2)C9—H90.98
C1—C21.389 (2)C10—H10A0.96
C1—C61.414 (2)C10—H10B0.96
C2—C31.377 (3)C10—H10C0.96
C2—H20.93C11—C161.382 (2)
C3—C41.394 (3)C11—C121.389 (3)
C3—H30.93C12—C131.383 (3)
C4—C51.383 (2)C12—H120.93
C4—C71.514 (3)C13—C141.362 (4)
C5—C61.397 (2)C13—H130.93
C5—H50.93C14—C151.367 (4)
C6—C81.457 (2)C14—H140.93
C7—H7A0.96C15—C161.390 (4)
C7—H7B0.96C15—H150.93
C7—H7C0.96C16—H160.93
C1—O1—H1109.4N1—C9—C10108.95 (14)
C8—N1—C9118.78 (15)C11—C9—C10113.93 (15)
O1—C1—C2119.47 (15)N1—C9—H9108.6
O1—C1—C6121.80 (15)C11—C9—H9108.6
C2—C1—C6118.71 (15)C10—C9—H9108.6
C3—C2—C1120.53 (17)C9—C10—H10A109.5
C3—C2—H2119.7C9—C10—H10B109.5
C1—C2—H2119.7H10A—C10—H10B109.5
C2—C3—C4122.18 (18)C9—C10—H10C109.5
C2—C3—H3118.9H10A—C10—H10C109.5
C4—C3—H3118.9H10B—C10—H10C109.5
C5—C4—C3117.16 (17)C16—C11—C12117.99 (18)
C5—C4—C7121.14 (18)C16—C11—C9120.77 (17)
C3—C4—C7121.69 (18)C12—C11—C9121.20 (15)
C4—C5—C6122.38 (16)C13—C12—C11121.01 (18)
C4—C5—H5118.8C13—C12—H12119.5
C6—C5—H5118.8C11—C12—H12119.5
C5—C6—C1119.04 (15)C14—C13—C12120.5 (2)
C5—C6—C8119.88 (15)C14—C13—H13119.8
C1—C6—C8121.07 (15)C12—C13—H13119.8
C4—C7—H7A109.5C13—C14—C15119.3 (2)
C4—C7—H7B109.5C13—C14—H14120.3
H7A—C7—H7B109.5C15—C14—H14120.3
C4—C7—H7C109.5C14—C15—C16121.0 (2)
H7A—C7—H7C109.5C14—C15—H15119.5
H7B—C7—H7C109.5C16—C15—H15119.5
N1—C8—C6122.04 (15)C11—C16—C15120.2 (2)
N1—C8—H8119.0C11—C16—H16119.9
C6—C8—H8119.0C15—C16—H16119.9
N1—C9—C11108.04 (14)
O1—C1—C2—C3178.86 (18)C1—C6—C8—N10.4 (2)
C6—C1—C2—C30.5 (3)C8—N1—C9—C11123.36 (15)
C1—C2—C3—C40.3 (3)C8—N1—C9—C10112.39 (18)
C2—C3—C4—C50.2 (3)N1—C9—C11—C16110.20 (17)
C2—C3—C4—C7179.20 (18)C10—C9—C11—C16128.59 (19)
C3—C4—C5—C60.5 (2)N1—C9—C11—C1267.34 (19)
C7—C4—C5—C6178.95 (15)C10—C9—C11—C1253.9 (2)
C4—C5—C6—C10.8 (2)C16—C11—C12—C130.2 (3)
C4—C5—C6—C8178.08 (14)C9—C11—C12—C13177.84 (18)
O1—C1—C6—C5179.05 (16)C11—C12—C13—C140.7 (3)
C2—C1—C6—C50.8 (2)C12—C13—C14—C150.8 (3)
O1—C1—C6—C80.2 (2)C13—C14—C15—C160.5 (4)
C2—C1—C6—C8178.06 (16)C12—C11—C16—C150.1 (3)
C9—N1—C8—C6179.41 (13)C9—C11—C16—C15177.52 (19)
C5—C6—C8—N1178.41 (14)C14—C15—C16—C110.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.613 (2)147

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)20.342 (8), 5.911 (2), 14.551 (5)
β (°) 128.585 (4)
V3)1367.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.35 × 0.34 × 0.26
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.971, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5952, 1726, 1609
Rint0.034
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.100, 1.08
No. of reflections1726
No. of parameters166
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.12

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.613 (2)147
 

Acknowledgements

This project was supported by the Talent Fund of Xi'an University of Architecture and Technology.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds