organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Furo­yl)-3-(1-naphth­yl)thio­urea

aDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba, bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and cInstitute of Materials, UNAM, Av. Universidad No 3000 Col. Copilco el Alto, DF, Mexico
*Correspondence e-mail: duque@imre.oc.uh.cu

(Received 24 April 2008; accepted 27 April 2008; online 14 May 2008)

In the title compound, C16H12N2O2S, the carbonyl­thio­urea group forms dihedral angles of 75.4 (1) and 13.1 (2)°, respectively, with the naphthalene ring system and furan ring. The mol­ecule adopts a transcis configuration with respect to the positions of the furoyl and naphthyl groups relative to the S atom across the thio­urea C—N bonds. This geometry is stabilized by an N—H⋯·O intra­molecular hydrogen bond. In the crystal structure, mol­ecules are linked by N—H⋯S hydrogen bonds, forming centrosymmetric dimers which are inter­linked through C—H⋯π inter­actions.

Related literature

For general background, see: Ashraf et al. (2007[Ashraf, A. A., Essam, K. A., Khaled, M. E.-M. & Mohamed El-Amir, F. H. (2007). J. Sulfur Chem. 28, 73-93.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]). For related structures, see: Dago et al. (1987[Dago, A., Simonov, M. A., Pobedimskaya, E. A., Macías, A. & Martin, A. (1987). Kristallografiya, 32, 1024-1026.]); Cao et al. (1996[Cao, Y., Zhao, B., Zhang, Y.-Q. & Zhang, D.-C. (1996). Acta Cryst. C52, 1772-1774.]); Yuan et al. (1997[Yuan, Y.-F., Ye, S.-M., Zhang, L.-Y., Wang, B., Xu, Y.-M., Wang, J.-T. & Wang, H.-G. (1997). Inorg. Chim. Acta, 256, 313-318.]); Kaminsky et al. (2002[Kaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct. 605, 9-15.]); Weiqun et al. (2003[Weiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. (2003). J. Mol. Struct. 657, 215-223.]); Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]). For the synthesis, see: Otazo et al. (2001[Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O2S

  • Mr = 296.34

  • Monoclinic, P 21 /c

  • a = 9.402 (2) Å

  • b = 19.082 (4) Å

  • c = 7.880 (2) Å

  • β = 94.94 (1)°

  • V = 1408.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 294 (2) K

  • 0.50 × 0.25 × 0.05 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 3603 measured reflections

  • 2771 independent reflections

  • 1521 reflections with I > 2σ(I)

  • Rint = 0.043

  • 3 standard reflections every 97 reflections intensity decay: 2.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.131

  • S = 1.02

  • 2771 reflections

  • 239 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 (4) 2.00 (4) 2.698 (3) 138 (3)
N1—H1⋯S1i 0.91 (5) 2.57 (5) 3.455 (3) 164 (4)
C5—H5⋯Cg1ii 0.96 (4) 2.85 (4) 3.654 (4) 143 (3)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the C7–C11/C16 ring.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The subject of aroylsubstituted thioureas is considered as a very interesting topic due to their remarkable optical and electronic properties (Ashraf et al.,2007). Substitutions that reduce the symmetry of the thiourea molecule enhance the non-linear optical properties. A variety of crystals of this class has been reported (Dago et al., 1987; Cao et al., 1996; Yuan et al., 1997; Kaminsky et al., 2002; Weiqun et al., 2003). The title compound (Fig.1) is another example of a newly synthesized furoylthiourea derivative.

The bond lengths and angles are comparable with those observed in other thiourea derivatives (Koch et al., 2001). The α-naphtalene ring system attached to N2 is essentially planar and inclined at an angle of 75.4 (1)° with respect to the plane of carbonylthiourea group. The dihedral angle between the carbonylthiourea group and furan ring is 13.1 (2)°. The molecule adopts a trans-cis configuration with respect to the position of the furoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. This geometry is stabilized by the N2—H2···.O1 intramolecular hydrogen bond (Fig.1).

In the crystal structure, molecules are linked by N1—H1···.S1 hydrogen bonds (Table 1) forming a centrosymmetric dimer (Fig. 2). The dimers are arranged along the c axis. In addition, the crystal packing is stabilized by C—H···π interactions involving the C7-C11/C16 ring.

Related literature top

For general background, see: Ashraf et al. (2007); Koch (2001). For related structures, see: Dago et al. (1987); Cao et al. (1996); Yuan et al. (1997); Kaminsky et al. (2002); Weiqun et al. (2003); Yamin & Hassan (2004). For the synthesis, see: Otazo et al. (2001). Cg1 is the centroid of the C7–C11/C16 ring.

Experimental top

The title compound was synthesized according to a previous report (Otazo et al., 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with α-naphtylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 186–187°). Elemental analysis for C16H12N2O2S calculated: C 64.86, H 4.05, N 9.46, S 10.81%; found: C 64.70, H 4.10, N 9.54, S 10.41%.

Refinement top

All H atoms were located by difference Fourier synthesis and refined freely.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
1-(2-Furoyl)-3-(1-naphthyl)thiourea top
Crystal data top
C16H12N2O2SF(000) = 616
Mr = 296.34Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 37 reflections
a = 9.402 (2) Åθ = 9.9–23.4°
b = 19.082 (4) ŵ = 0.24 mm1
c = 7.880 (2) ÅT = 294 K
β = 94.94 (1)°Plate, white
V = 1408.5 (6) Å30.50 × 0.25 × 0.05 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.1°
Graphite monochromatorh = 1111
2θ/ω scansk = 231
3603 measured reflectionsl = 19
2771 independent reflections3 standard reflections every 97 reflections
1521 reflections with I > 2σ(I) intensity decay: 2.6%
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2114P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.058(Δ/σ)max < 0.001
wR(F2) = 0.131Δρmax = 0.37 e Å3
S = 1.02Δρmin = 0.22 e Å3
2771 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
239 parametersExtinction coefficient: none
0 restraints
Crystal data top
C16H12N2O2SV = 1408.5 (6) Å3
Mr = 296.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.402 (2) ŵ = 0.24 mm1
b = 19.082 (4) ÅT = 294 K
c = 7.880 (2) Å0.50 × 0.25 × 0.05 mm
β = 94.94 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.043
3603 measured reflections3 standard reflections every 97 reflections
2771 independent reflections intensity decay: 2.6%
1521 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.131All H-atom parameters refined
S = 1.02Δρmax = 0.37 e Å3
2771 reflectionsΔρmin = 0.22 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57874 (10)0.05278 (4)0.80311 (14)0.0521 (3)
O10.7296 (2)0.17234 (11)0.7355 (3)0.0472 (7)
O20.4090 (2)0.17986 (11)0.9419 (3)0.0505 (7)
N10.5895 (3)0.08508 (13)0.8319 (4)0.0404 (8)
N20.7522 (3)0.03510 (14)0.6602 (4)0.0382 (7)
C70.8101 (3)0.02051 (16)0.5647 (4)0.0334 (8)
C110.9652 (3)0.12250 (17)0.5475 (5)0.0378 (9)
C20.6455 (3)0.02544 (15)0.7612 (4)0.0355 (8)
C80.7742 (4)0.0249 (2)0.3936 (5)0.0439 (9)
C160.9075 (3)0.06863 (15)0.6463 (4)0.0334 (8)
C10.6256 (3)0.15409 (16)0.8096 (4)0.0345 (8)
C30.5298 (3)0.20467 (16)0.8776 (4)0.0343 (8)
C100.9242 (4)0.1259 (2)0.3713 (5)0.0468 (10)
C150.9520 (4)0.06626 (19)0.8244 (5)0.0399 (9)
C60.3331 (4)0.2368 (2)0.9858 (5)0.0538 (11)
C50.4016 (4)0.2956 (2)0.9518 (5)0.0492 (10)
C40.5283 (4)0.27538 (18)0.8823 (5)0.0453 (9)
C121.0639 (4)0.1706 (2)0.6295 (6)0.0521 (11)
C90.8308 (4)0.0782 (2)0.2963 (6)0.0530 (11)
C141.0479 (4)0.1136 (2)0.8953 (6)0.0526 (11)
C131.1034 (4)0.1664 (2)0.7981 (6)0.0564 (11)
H150.918 (3)0.0323 (14)0.890 (4)0.024 (8)*
H40.602 (3)0.3026 (16)0.844 (4)0.040 (9)*
H100.963 (3)0.1650 (19)0.306 (5)0.055 (10)*
H121.106 (3)0.2074 (18)0.560 (4)0.055 (10)*
H60.242 (4)0.228 (2)1.031 (5)0.072 (13)*
H80.709 (3)0.0104 (16)0.340 (4)0.039 (9)*
H90.810 (3)0.0785 (16)0.182 (5)0.039 (10)*
H20.775 (4)0.078 (2)0.645 (5)0.063 (12)*
H131.175 (4)0.197 (2)0.860 (5)0.081 (14)*
H141.073 (4)0.1106 (19)1.015 (5)0.062 (12)*
H10.531 (5)0.072 (2)0.913 (6)0.092 (16)*
H50.374 (4)0.342 (2)0.977 (6)0.090 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0644 (6)0.0296 (4)0.0675 (8)0.0031 (4)0.0355 (5)0.0018 (5)
O10.0483 (14)0.0326 (12)0.0632 (18)0.0007 (10)0.0198 (13)0.0038 (12)
O20.0541 (14)0.0330 (12)0.067 (2)0.0051 (11)0.0224 (14)0.0050 (13)
N10.0461 (17)0.0264 (14)0.051 (2)0.0024 (13)0.0188 (16)0.0012 (14)
N20.0428 (16)0.0303 (16)0.0431 (19)0.0004 (13)0.0125 (14)0.0014 (14)
C70.0360 (17)0.0391 (18)0.027 (2)0.0058 (15)0.0110 (15)0.0021 (16)
C110.0380 (17)0.0396 (19)0.038 (2)0.0075 (15)0.0171 (17)0.0070 (17)
C20.0413 (18)0.0301 (17)0.036 (2)0.0038 (14)0.0104 (16)0.0026 (16)
C80.041 (2)0.055 (2)0.037 (2)0.0042 (18)0.0065 (18)0.010 (2)
C160.0343 (17)0.0330 (18)0.035 (2)0.0036 (14)0.0121 (16)0.0021 (15)
C10.0386 (18)0.0311 (17)0.033 (2)0.0011 (14)0.0004 (17)0.0025 (16)
C30.0398 (18)0.0315 (17)0.032 (2)0.0021 (14)0.0036 (16)0.0020 (16)
C100.050 (2)0.048 (2)0.045 (3)0.0065 (19)0.022 (2)0.012 (2)
C150.045 (2)0.043 (2)0.033 (2)0.0055 (17)0.0101 (17)0.0038 (18)
C60.057 (2)0.052 (2)0.055 (3)0.017 (2)0.021 (2)0.003 (2)
C50.070 (3)0.037 (2)0.042 (3)0.015 (2)0.009 (2)0.0001 (19)
C40.054 (2)0.036 (2)0.047 (3)0.0026 (17)0.009 (2)0.0019 (19)
C120.053 (2)0.042 (2)0.064 (3)0.0095 (18)0.021 (2)0.009 (2)
C90.060 (3)0.076 (3)0.025 (2)0.021 (2)0.014 (2)0.012 (2)
C140.057 (2)0.066 (3)0.035 (3)0.009 (2)0.004 (2)0.004 (2)
C130.060 (3)0.057 (2)0.053 (3)0.016 (2)0.007 (2)0.007 (2)
Geometric parameters (Å, º) top
S1—C21.663 (3)C1—C31.453 (4)
O1—C11.232 (4)C3—C41.350 (4)
O2—C61.362 (4)C10—C91.364 (6)
O2—C31.368 (4)C10—H100.99 (4)
N1—C11.375 (4)C15—C141.362 (5)
N1—C21.391 (4)C15—H150.90 (3)
N1—H10.91 (4)C6—C51.331 (5)
N2—C21.346 (4)C6—H60.97 (4)
N2—C71.435 (4)C5—C41.408 (5)
N2—H20.86 (4)C5—H50.96 (4)
C7—C81.364 (5)C4—H40.93 (3)
C7—C161.412 (4)C12—C131.351 (6)
C11—C101.410 (5)C12—H121.00 (3)
C11—C121.420 (5)C9—H90.90 (3)
C11—C161.424 (4)C14—C131.393 (6)
C8—C91.406 (5)C14—H140.95 (4)
C8—H80.98 (3)C13—H130.99 (4)
C16—C151.430 (5)
C6—O2—C3106.8 (3)C9—C10—C11120.5 (4)
C1—N1—C2128.8 (3)C9—C10—H10122 (2)
C1—N1—H1122 (3)C11—C10—H10118 (2)
C2—N1—H1109 (3)C14—C15—C16120.6 (4)
C2—N2—C7123.0 (3)C14—C15—H15119.9 (18)
C2—N2—H2115 (2)C16—C15—H15119.5 (18)
C7—N2—H2121 (3)C5—C6—O2110.3 (3)
C8—C7—C16120.4 (3)C5—C6—H6133 (2)
C8—C7—N2119.4 (3)O2—C6—H6117 (2)
C16—C7—N2120.1 (3)C6—C5—C4106.7 (3)
C10—C11—C12122.0 (3)C6—C5—H5127 (3)
C10—C11—C16119.2 (3)C4—C5—H5126 (3)
C12—C11—C16118.8 (3)C3—C4—C5107.2 (3)
N2—C2—N1116.9 (3)C3—C4—H4122.5 (19)
N2—C2—S1123.6 (2)C5—C4—H4130.3 (19)
N1—C2—S1119.5 (2)C13—C12—C11121.5 (4)
C7—C8—C9120.7 (4)C13—C12—H12119.6 (19)
C7—C8—H8118.4 (19)C11—C12—H12119 (2)
C9—C8—H8120.9 (19)C10—C9—C8120.4 (4)
C7—C16—C11118.9 (3)C10—C9—H9120 (2)
C7—C16—C15123.4 (3)C8—C9—H9119 (2)
C11—C16—C15117.8 (3)C15—C14—C13121.3 (4)
O1—C1—N1123.1 (3)C15—C14—H14118 (2)
O1—C1—C3122.0 (3)C13—C14—H14121 (2)
N1—C1—C3114.9 (3)C12—C13—C14120.0 (4)
C4—C3—O2108.9 (3)C12—C13—H13125 (2)
C4—C3—C1133.0 (3)C14—C13—H13115 (2)
O2—C3—C1117.9 (3)
C2—N2—C7—C8103.8 (4)O1—C1—C3—C41.5 (6)
C2—N2—C7—C1678.5 (4)N1—C1—C3—C4179.6 (4)
C7—N2—C2—N1173.3 (3)O1—C1—C3—O2173.3 (3)
C7—N2—C2—S16.3 (5)N1—C1—C3—O25.6 (5)
C1—N1—C2—N21.9 (5)C12—C11—C10—C9179.0 (3)
C1—N1—C2—S1177.8 (3)C16—C11—C10—C90.1 (5)
C16—C7—C8—C91.5 (5)C7—C16—C15—C14179.1 (3)
N2—C7—C8—C9179.1 (3)C11—C16—C15—C140.8 (5)
C8—C7—C16—C111.2 (4)C3—O2—C6—C50.1 (4)
N2—C7—C16—C11178.9 (3)O2—C6—C5—C40.0 (5)
C8—C7—C16—C15178.7 (3)O2—C3—C4—C50.2 (4)
N2—C7—C16—C151.1 (4)C1—C3—C4—C5174.9 (4)
C10—C11—C16—C70.4 (4)C6—C5—C4—C30.1 (5)
C12—C11—C16—C7179.6 (3)C10—C11—C12—C13179.4 (3)
C10—C11—C16—C15179.5 (3)C16—C11—C12—C130.3 (5)
C12—C11—C16—C150.4 (4)C11—C10—C9—C80.1 (5)
C2—N1—C1—O19.3 (6)C7—C8—C9—C100.9 (5)
C2—N1—C1—C3169.6 (3)C16—C15—C14—C131.2 (6)
C6—O2—C3—C40.2 (4)C11—C12—C13—C140.5 (6)
C6—O2—C3—C1175.8 (3)C15—C14—C13—C121.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (4)2.00 (4)2.698 (3)138 (3)
N1—H1···S1i0.91 (5)2.57 (5)3.455 (3)164 (4)
C5—H5···Cg1ii0.96 (4)2.85 (4)3.654 (4)143 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H12N2O2S
Mr296.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.402 (2), 19.082 (4), 7.880 (2)
β (°) 94.94 (1)
V3)1408.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.25 × 0.05
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3603, 2771, 1521
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.131, 1.02
No. of reflections2771
No. of parameters239
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (4)2.00 (4)2.698 (3)138 (3)
N1—H1···S1i0.91 (5)2.57 (5)3.455 (3)164 (4)
C5—H5···Cg1ii0.96 (4)2.85 (4)3.654 (4)143 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the Brazilian agency CNPq.

References

First citationAshraf, A. A., Essam, K. A., Khaled, M. E.-M. & Mohamed El-Amir, F. H. (2007). J. Sulfur Chem. 28, 73–93.  Google Scholar
First citationCao, Y., Zhao, B., Zhang, Y.-Q. & Zhang, D.-C. (1996). Acta Cryst. C52, 1772–1774.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDago, A., Simonov, M. A., Pobedimskaya, E. A., Macías, A. & Martin, A. (1987). Kristallografiya, 32, 1024–1026.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct. 605, 9–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationOtazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWeiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. (2003). J. Mol. Struct. 657, 215–223.  Web of Science CSD CrossRef Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, Y.-F., Ye, S.-M., Zhang, L.-Y., Wang, B., Xu, Y.-M., Wang, J.-T. & Wang, H.-G. (1997). Inorg. Chim. Acta, 256, 313–318.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds