organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Chloro­phen­yl)-3-(4-methyl­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India.
*Correspondence e-mail: hkfun@usm.my

(Received 30 April 2008; accepted 5 May 2008; online 10 May 2008)

The title compound, C16H13ClO, adopts an E configuration with respect to the C=C double bond of the propenone unit. The dihedral angle between the two benzene rings is 45.9 (2)°. In the crystal structure, mol­ecules are arranged into sheets parallel to the ac plane and the sheets are stacked along the b axis. This arrangement is stabilized by weak inter­molecular C—H⋯π inter­actions involving both aromatic rings.

Related literature

For applications of chalcones in non-linear optics, see: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]). For related structures, see: Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]); Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]); Patil, Rosli et al. (2007[Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o3238.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClO

  • Mr = 256.71

  • Monoclinic, P 21 /c

  • a = 15.2632 (3) Å

  • b = 14.0146 (3) Å

  • c = 5.8487 (1) Å

  • β = 92.154 (1)°

  • V = 1250.20 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100.0 (1) K

  • 0.34 × 0.18 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.986

  • 15494 measured reflections

  • 3661 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.129

  • S = 1.04

  • 3661 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1 0.93 2.50 2.820 (2) 100
C5—H5⋯Cg1i 0.93 2.98 3.525 119
C2—H2⋯Cg2ii 0.93 2.93 3.563 127
C14—H14⋯Cg2iii 0.93 2.80 3.495 132
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) -x, -y, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Recently, significant progress has been achieved in the growth of noncentrosymmetric crystals for second harmonic generation (SHG), mostly that of chalcone derivatives substituted with different donor/acceptor substituents (Agrinskaya et al., 1999; Patil, Dharmaprakash et al., 2007; Patil, Fun et al., 2007; Patil, Rosli et al., 2007). Herein we report the crystal structure of the title compound.

The title molecule (Fig.1) exhibits an E configuration with respect to the C8?C9 double bond, with the C7—C8—C9—C10 torsion angle being -175.3 (2)°. The bond lengths and angles are comparable to those observed in related structures (Patil, Dharmaprakash et al., 2007; Patil, Fun et al., 2007; Patil, Rosli et al., 2007). The dihedral angle between the two benzene rings is 45.9 (1)°.

In the molecular structure, an intramolecular C—H···O hydrogen bond generates an S(5) ring motif. In the crystal structure, the molecules are arranged into sheets parallel to the ac plane and the sheets are stacked along the b axis (Fig. 2). This arrangement is stabilized by weak intermolecular C—H···π interactions involving both aromatic rings, Table 1.

Related literature top

For applications of chalcones in non-linear optics, see: Agrinskaya et al. (1999). For related structures, see: Patil, Dharmaprakash et al. (2007); Patil, Fun et al. (2007); Patil, Rosli et al. (2007). Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Experimental top

The title compound was synthesized by the condensation of p-tolualdehyde (0.01 mol) with 4-chloroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 6 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 12 h. The resulting crude solid was filtered and dried. Single crystals suitable for X-ray diffraction were grown by slow evaporation of an acetone solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating-group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(4-Chlorophenyl)-3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C16H13ClOF(000) = 536
Mr = 256.71Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2431 reflections
a = 15.2632 (3) Åθ = 2.7–29.9°
b = 14.0146 (3) ŵ = 0.29 mm1
c = 5.8487 (1) ÅT = 100 K
β = 92.154 (1)°Plate, colourless
V = 1250.20 (4) Å30.34 × 0.18 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3661 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2121
Tmin = 0.908, Tmax = 0.986k = 1919
15494 measured reflectionsl = 68
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.9337P]
where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H13ClOV = 1250.20 (4) Å3
Mr = 256.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2632 (3) ŵ = 0.29 mm1
b = 14.0146 (3) ÅT = 100 K
c = 5.8487 (1) Å0.34 × 0.18 × 0.05 mm
β = 92.154 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2534 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.986Rint = 0.055
15494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
3661 reflectionsΔρmin = 0.27 e Å3
164 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37993 (3)0.37197 (4)0.72301 (10)0.02546 (15)
O10.01956 (10)0.38013 (12)0.3019 (2)0.0258 (4)
C10.12084 (13)0.40835 (14)0.7779 (3)0.0177 (4)
H10.07970.42950.88780.021*
C20.20925 (13)0.40915 (14)0.8251 (3)0.0178 (4)
H20.22790.43220.96430.021*
C30.26921 (13)0.37513 (14)0.6615 (3)0.0178 (4)
C40.24374 (13)0.34215 (14)0.4505 (4)0.0192 (4)
H40.28500.31960.34250.023*
C50.15563 (13)0.34352 (14)0.4044 (3)0.0178 (4)
H50.13750.32250.26300.021*
C60.09327 (12)0.37615 (14)0.5676 (3)0.0166 (4)
C70.00093 (13)0.37789 (14)0.5041 (4)0.0183 (4)
C80.06927 (13)0.37523 (15)0.6898 (3)0.0190 (4)
H80.05410.35960.83770.023*
C90.15291 (13)0.39512 (14)0.6470 (3)0.0170 (4)
H90.16410.41500.49920.020*
C100.22861 (13)0.38904 (13)0.8071 (3)0.0160 (4)
C110.31013 (13)0.42159 (14)0.7374 (3)0.0172 (4)
H110.31440.44940.59390.021*
C120.38450 (13)0.41295 (14)0.8791 (4)0.0187 (4)
H120.43780.43580.82990.022*
C130.38079 (13)0.37070 (14)1.0938 (3)0.0180 (4)
C140.29931 (13)0.33856 (14)1.1634 (3)0.0174 (4)
H140.29530.31011.30630.021*
C150.22434 (13)0.34813 (14)1.0242 (3)0.0167 (4)
H150.17080.32711.07570.020*
C160.46114 (13)0.35970 (16)1.2478 (4)0.0241 (5)
H16A0.51170.35231.15670.036*
H16B0.45490.30441.34280.036*
H16C0.46820.41531.34250.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0154 (2)0.0311 (3)0.0299 (3)0.0011 (2)0.00166 (19)0.0017 (2)
O10.0214 (7)0.0393 (9)0.0169 (8)0.0012 (7)0.0016 (6)0.0010 (7)
C10.0183 (9)0.0173 (9)0.0171 (10)0.0015 (8)0.0029 (8)0.0006 (8)
C20.0194 (9)0.0177 (10)0.0162 (10)0.0015 (8)0.0004 (8)0.0004 (8)
C30.0154 (9)0.0166 (9)0.0214 (10)0.0007 (8)0.0010 (8)0.0031 (8)
C40.0195 (10)0.0183 (10)0.0195 (10)0.0000 (8)0.0047 (8)0.0006 (8)
C50.0214 (10)0.0171 (9)0.0148 (10)0.0022 (8)0.0013 (8)0.0002 (8)
C60.0161 (9)0.0150 (9)0.0185 (10)0.0014 (8)0.0011 (7)0.0032 (8)
C70.0179 (9)0.0178 (9)0.0192 (10)0.0005 (8)0.0009 (8)0.0001 (8)
C80.0196 (10)0.0214 (10)0.0161 (10)0.0019 (8)0.0004 (8)0.0023 (8)
C90.0194 (9)0.0165 (10)0.0152 (10)0.0023 (8)0.0017 (8)0.0010 (8)
C100.0162 (9)0.0147 (9)0.0171 (10)0.0035 (7)0.0013 (7)0.0015 (8)
C110.0205 (10)0.0168 (10)0.0144 (10)0.0018 (8)0.0022 (8)0.0012 (8)
C120.0153 (9)0.0197 (10)0.0212 (11)0.0007 (8)0.0037 (8)0.0010 (8)
C130.0171 (9)0.0177 (9)0.0191 (10)0.0012 (8)0.0012 (8)0.0021 (8)
C140.0207 (10)0.0185 (10)0.0129 (9)0.0004 (8)0.0010 (8)0.0006 (8)
C150.0160 (9)0.0167 (10)0.0175 (10)0.0010 (8)0.0033 (8)0.0018 (8)
C160.0175 (10)0.0309 (12)0.0235 (11)0.0004 (9)0.0030 (8)0.0027 (9)
Geometric parameters (Å, º) top
Cl1—C31.742 (2)C9—C101.462 (3)
O1—C71.227 (2)C9—H90.93
C1—C21.388 (3)C10—C151.397 (3)
C1—C61.390 (3)C10—C111.400 (3)
C1—H10.93C11—C121.385 (3)
C2—C31.384 (3)C11—H110.93
C2—H20.93C12—C131.391 (3)
C3—C41.387 (3)C12—H120.93
C4—C51.382 (3)C13—C141.397 (3)
C4—H40.93C13—C161.502 (3)
C5—C61.399 (3)C14—C151.386 (3)
C5—H50.93C14—H140.93
C6—C71.499 (3)C15—H150.93
C7—C81.478 (3)C16—H16A0.96
C8—C91.340 (3)C16—H16B0.96
C8—H80.93C16—H16C0.96
C2—C1—C6120.50 (19)C10—C9—H9116.4
C2—C1—H1119.7C15—C10—C11118.07 (18)
C6—C1—H1119.7C15—C10—C9122.91 (18)
C3—C2—C1118.86 (19)C11—C10—C9118.95 (18)
C3—C2—H2120.6C12—C11—C10120.97 (18)
C1—C2—H2120.6C12—C11—H11119.5
C2—C3—C4122.00 (18)C10—C11—H11119.5
C2—C3—Cl1119.19 (16)C11—C12—C13121.12 (19)
C4—C3—Cl1118.81 (15)C11—C12—H12119.4
C5—C4—C3118.44 (19)C13—C12—H12119.4
C5—C4—H4120.8C12—C13—C14117.82 (18)
C3—C4—H4120.8C12—C13—C16121.66 (18)
C4—C5—C6120.91 (19)C14—C13—C16120.52 (18)
C4—C5—H5119.5C15—C14—C13121.47 (19)
C6—C5—H5119.5C15—C14—H14119.3
C1—C6—C5119.27 (18)C13—C14—H14119.3
C1—C6—C7122.63 (18)C14—C15—C10120.54 (18)
C5—C6—C7118.07 (18)C14—C15—H15119.7
O1—C7—C8121.77 (18)C10—C15—H15119.7
O1—C7—C6119.90 (18)C13—C16—H16A109.5
C8—C7—C6118.32 (18)C13—C16—H16B109.5
C9—C8—C7120.57 (19)H16A—C16—H16B109.5
C9—C8—H8119.7C13—C16—H16C109.5
C7—C8—H8119.7H16A—C16—H16C109.5
C8—C9—C10127.16 (19)H16B—C16—H16C109.5
C8—C9—H9116.4
C6—C1—C2—C31.6 (3)C6—C7—C8—C9166.97 (19)
C1—C2—C3—C41.3 (3)C7—C8—C9—C10175.30 (19)
C1—C2—C3—Cl1177.78 (15)C8—C9—C10—C159.1 (3)
C2—C3—C4—C50.1 (3)C8—C9—C10—C11173.9 (2)
Cl1—C3—C4—C5179.00 (15)C15—C10—C11—C120.4 (3)
C3—C4—C5—C60.9 (3)C9—C10—C11—C12176.80 (18)
C2—C1—C6—C50.7 (3)C10—C11—C12—C130.8 (3)
C2—C1—C6—C7177.19 (18)C11—C12—C13—C141.0 (3)
C4—C5—C6—C10.6 (3)C11—C12—C13—C16179.17 (19)
C4—C5—C6—C7178.54 (18)C12—C13—C14—C150.0 (3)
C1—C6—C7—O1155.5 (2)C16—C13—C14—C15179.90 (19)
C5—C6—C7—O122.4 (3)C13—C14—C15—C101.1 (3)
C1—C6—C7—C825.5 (3)C11—C10—C15—C141.3 (3)
C5—C6—C7—C8156.65 (18)C9—C10—C15—C14175.76 (18)
O1—C7—C8—C914.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.502.820 (2)100
C5—H5···Cg1i0.932.983.525119
C2—H2···Cg2ii0.932.933.563127
C14—H14···Cg2iii0.932.803.495132
Symmetry codes: (i) x, y1/2, z3/2; (ii) x, y, z+1; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13ClO
Mr256.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.2632 (3), 14.0146 (3), 5.8487 (1)
β (°) 92.154 (1)
V3)1250.20 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.34 × 0.18 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.908, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
15494, 3661, 2534
Rint0.055
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.129, 1.04
No. of reflections3661
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.502.820 (2)100
C5—H5···Cg1i0.932.983.525119
C2—H2···Cg2ii0.932.933.563127
C14—H14···Cg2iii0.932.803.495132
Symmetry codes: (i) x, y1/2, z3/2; (ii) x, y, z+1; (iii) x, y1/2, z1/2.
 

Footnotes

Permanent address : Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. PSP thanks the DRDO, Government of India, for a Senior Research Fellowship (SRF). This work was also supported by the Department of Science and Technology (DST), Government of India, grant No. SR/S2/LOP-17/2006.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o3238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds