organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(2-Hy­droxy­benzyl­­idene)amino]benzene­sulfonic acid

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: mingtian8001@163.com

(Received 4 May 2008; accepted 22 May 2008; online 30 May 2008)

The title mol­ecule, C13H11NO4S, displays a trans configuration with respect to the imine C=N double bond. The central benzene ring directly linked to N and the hydroxyl group are disordered over two orientations [occupancies of 0.510 (16)/0.490 (16) and 0.528 (8)/0.472 (8), respectively]. The dihedral angle between the two aromatic rings is 23.3 (5)° for the major component and 18.3 (5)° for the minor component. There is an intra­molecular O—H⋯N hydrogen bond and mol­ecules are linked into chains along the a axis by O—H⋯O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO4S

  • Mr = 277.29

  • Monoclinic, C c

  • a = 4.8711 (5) Å

  • b = 29.022 (3) Å

  • c = 9.0356 (17) Å

  • β = 97.223 (2)°

  • V = 1267.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.42 × 0.31 × 0.15 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.897, Tmax = 0.961

  • 3185 measured reflections

  • 1952 independent reflections

  • 1656 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.121

  • S = 1.09

  • 1952 reflections

  • 213 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 822 Friedel pairs

  • Flack parameter: −0.06 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 2.17 2.917 (5) 151
O4—H4⋯N1 0.82 2.01 2.665 (10) 136
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been of great interest for many years. These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures. As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The structure of the title molecule is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The C7N1 bond length of 1.262 (7) Å conforms to the value for a double bond. The dihedral angle between C1—C6 and C8—C13 benzene rings is 23.3 (5)° and that between C1/C2'/C3'/C4/C5'/C6' and C8—C13 rings is 18.3 (5)°. The C7—N1—C4—C5, C7—N1—C4—C3, O1—S1—C1—C6, O3—S1—C1—C6 and O2—S1—C1—C6 torsion angles are 22.8 (12)°, -156.4 (9)°, 173.5 (9)°, -58.9 (9)° and 56.3 (9)°, respectively. The molecule adopts a trans configuration about the C7?N1 bond. There exists an intramolecular O4—H4···N1 hydrogen bond involving the hydroxyl group and the imine N atom (Table 1).

In the crystal structure, the molecules are linked into chains running along the a axis by O—H···O hydrogen bonds.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

Salicylaldehyde (0.1 mmol, 12.2 mg) and sulfamide (0.1 mmol, 17.2 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 10 min and then filtered. The filtrate was allowed to stand in air for 3 d, after which time yellow block-shaped crystals of the title compound were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 48.88, H 3.20, N 4.07%; calculated for C13H11NO4S: C 48.9, H 3.20, N 4.08%.

Refinement top

The central benzene ring is disordered over two orientations (C1—C6/C1,C2',C3',C4,C5',C6') with refined occupancies of 0.510 (16) and 0.490 (16). The –OH group is also disordered over two positions with refined occupancies of 0.528 (8) and 0.472 (8). H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown.
(E)-4-[(2-Hydroxybenzylidene)amino]benzenesulfonic acid top
Crystal data top
C13H11NO4SF(000) = 576
Mr = 277.29Dx = 1.453 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1329 reflections
a = 4.8711 (5) Åθ = 2.7–23.9°
b = 29.022 (3) ŵ = 0.27 mm1
c = 9.0356 (17) ÅT = 298 K
β = 97.223 (2)°Block, yellow
V = 1267.2 (3) Å30.42 × 0.31 × 0.15 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
1952 independent reflections
Radiation source: fine-focus sealed tube1656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.897, Tmax = 0.961k = 3431
3185 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0495P)2 + 1.7913P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1952 reflectionsΔρmax = 0.34 e Å3
213 parametersΔρmin = 0.30 e Å3
2 restraintsAbsolute structure: Flack (1983), 822 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (14)
Crystal data top
C13H11NO4SV = 1267.2 (3) Å3
Mr = 277.29Z = 4
Monoclinic, CcMo Kα radiation
a = 4.8711 (5) ŵ = 0.27 mm1
b = 29.022 (3) ÅT = 298 K
c = 9.0356 (17) Å0.42 × 0.31 × 0.15 mm
β = 97.223 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1656 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.961Rint = 0.026
3185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.34 e Å3
S = 1.09Δρmin = 0.30 e Å3
1952 reflectionsAbsolute structure: Flack (1983), 822 Friedel pairs
213 parametersAbsolute structure parameter: 0.06 (14)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.75870 (18)0.76105 (3)0.47671 (13)0.0372 (3)
N10.6129 (9)0.96320 (13)0.4070 (4)0.0490 (10)
O10.6035 (6)0.73963 (10)0.3515 (3)0.0470 (8)
O20.6306 (8)0.74475 (13)0.6247 (5)0.0663 (11)
H20.46780.75260.61850.099*
O31.0490 (7)0.75204 (11)0.5021 (4)0.0501 (8)
O40.387 (2)1.0337 (3)0.2463 (11)0.0675 (18)0.528 (8)
H40.45791.00800.24830.101*0.528 (8)
O4'0.285 (2)1.0279 (4)0.3133 (12)0.0675 (18)0.472 (8)
H4'0.31381.00310.35570.101*0.472 (8)
C10.7196 (9)0.82135 (14)0.4573 (5)0.0365 (11)
C20.585 (3)0.8377 (3)0.3264 (16)0.042 (3)0.510 (16)
H2A0.51780.81790.24930.051*0.510 (16)
C30.554 (3)0.8837 (3)0.3133 (16)0.045 (3)0.510 (16)
H30.45980.89550.22540.055*0.510 (16)
C2'0.470 (3)0.8413 (3)0.3925 (16)0.042 (3)0.490 (16)
H2'0.32240.82230.35860.051*0.490 (16)
C3'0.439 (3)0.8887 (3)0.3777 (16)0.044 (3)0.490 (16)
H3'0.27330.90150.33390.053*0.490 (16)
C40.6589 (11)0.91570 (17)0.4298 (6)0.0426 (11)
C50.805 (3)0.8949 (4)0.5579 (16)0.046 (3)0.510 (16)
H50.88680.91360.63460.056*0.510 (16)
C60.829 (3)0.8473 (4)0.5726 (16)0.043 (3)0.510 (16)
H60.91790.83390.65920.052*0.510 (16)
C5'0.909 (3)0.8993 (4)0.4909 (19)0.047 (3)0.490 (16)
H5'1.05470.91930.52130.056*0.490 (16)
C6'0.941 (3)0.8522 (4)0.5065 (17)0.047 (3)0.490 (16)
H6'1.11000.84030.54970.057*0.490 (16)
C70.7682 (15)0.99282 (16)0.4771 (9)0.0655 (13)
H70.91800.98260.54290.079*
C80.7245 (14)1.04208 (16)0.4601 (8)0.0570 (14)
C90.5144 (14)1.0594 (2)0.3606 (8)0.0771 (19)
C100.488 (2)1.1068 (2)0.3501 (10)0.107 (3)
H100.34371.11870.28430.129*
C110.6584 (18)1.1363 (2)0.4287 (9)0.0768 (18)
H110.63211.16790.41720.092*
C120.863 (2)1.1202 (2)0.5224 (11)0.102 (3)
H120.98401.14040.57760.122*
C130.8992 (19)1.0729 (2)0.5393 (10)0.111 (3)
H131.04551.06180.60590.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0310 (6)0.0410 (5)0.0369 (5)0.0050 (6)0.0055 (4)0.0024 (6)
N10.052 (3)0.041 (2)0.054 (3)0.0006 (18)0.008 (2)0.0014 (18)
O10.048 (2)0.0473 (18)0.0402 (19)0.0021 (15)0.0139 (15)0.0081 (15)
O20.055 (2)0.072 (2)0.070 (3)0.0037 (18)0.0028 (19)0.0086 (19)
O30.0328 (18)0.057 (2)0.060 (2)0.0086 (14)0.0027 (15)0.0050 (16)
O40.076 (6)0.062 (3)0.062 (5)0.009 (3)0.001 (3)0.008 (4)
O4'0.076 (6)0.062 (3)0.062 (5)0.009 (3)0.001 (3)0.008 (4)
C10.032 (3)0.040 (2)0.037 (3)0.002 (2)0.003 (2)0.000 (2)
C20.047 (8)0.039 (6)0.039 (7)0.008 (5)0.001 (6)0.005 (5)
C30.047 (7)0.045 (6)0.043 (7)0.002 (5)0.001 (6)0.002 (5)
C2'0.036 (7)0.041 (6)0.047 (8)0.004 (5)0.004 (6)0.004 (5)
C3'0.044 (7)0.042 (6)0.046 (7)0.005 (5)0.004 (6)0.000 (5)
C40.041 (3)0.040 (3)0.046 (3)0.002 (2)0.005 (2)0.001 (2)
C50.057 (9)0.041 (6)0.042 (7)0.002 (5)0.007 (6)0.008 (5)
C60.048 (8)0.042 (6)0.036 (7)0.002 (5)0.003 (6)0.007 (5)
C5'0.041 (8)0.042 (6)0.056 (9)0.003 (5)0.004 (7)0.008 (6)
C6'0.037 (8)0.046 (7)0.057 (9)0.003 (5)0.000 (7)0.003 (6)
C70.069 (3)0.048 (3)0.075 (3)0.001 (4)0.010 (3)0.009 (4)
C80.064 (4)0.042 (2)0.066 (4)0.006 (3)0.013 (3)0.002 (3)
C90.083 (5)0.051 (3)0.091 (5)0.019 (3)0.014 (4)0.018 (3)
C100.125 (7)0.058 (4)0.126 (7)0.030 (4)0.035 (6)0.003 (4)
C110.105 (6)0.046 (3)0.084 (5)0.006 (4)0.027 (4)0.004 (3)
C120.118 (7)0.056 (4)0.125 (7)0.021 (5)0.012 (6)0.001 (5)
C130.120 (6)0.058 (4)0.139 (7)0.013 (4)0.042 (6)0.010 (5)
Geometric parameters (Å, º) top
S1—O11.422 (3)C3'—H3'0.93
S1—O31.428 (3)C4—C5'1.359 (15)
S1—O21.615 (4)C4—C51.415 (14)
S1—C11.767 (4)C5—C61.392 (15)
N1—C71.262 (7)C5—H50.93
N1—C41.408 (6)C6—H60.93
O2—H20.82C5'—C6'1.382 (15)
O4—C91.359 (10)C5'—H5'0.93
O4—H40.82C6'—H6'0.93
O4'—C91.465 (12)C7—C81.451 (6)
O4'—H4'0.82C7—H70.93
C1—C61.340 (11)C8—C91.370 (8)
C1—C21.363 (12)C8—C131.372 (9)
C1—C2'1.405 (12)C9—C101.382 (8)
C1—C6'1.430 (13)C10—C111.333 (11)
C2—C31.348 (13)C10—H100.93
C2—H2A0.93C11—C121.310 (10)
C3—C41.448 (13)C11—H110.93
C3—H30.93C12—C131.390 (9)
C2'—C3'1.387 (14)C12—H120.93
C2'—H2'0.93C13—H130.93
C3'—C41.364 (12)
O1—S1—O3117.6 (2)C5—C4—C3114.6 (7)
O1—S1—O2108.0 (2)C6—C5—C4122.0 (10)
O3—S1—O2106.9 (2)C6—C5—H5119.0
O1—S1—C1108.29 (19)C4—C5—H5119.0
O3—S1—C1106.8 (2)C1—C6—C5117.5 (10)
O2—S1—C1108.9 (2)C1—C6—H6121.2
C7—N1—C4121.3 (4)C5—C6—H6121.2
S1—O2—H2109.5C4—C5'—C6'118.2 (11)
C9—O4—H4109.5C4—C5'—H5'120.9
C9—O4'—H4'109.5C6'—C5'—H5'120.9
C6—C1—C2125.4 (8)C5'—C6'—C1121.1 (11)
C6—C1—C2'109.3 (8)C5'—C6'—H6'119.5
C2—C1—C6'108.3 (7)C1—C6'—H6'119.5
C2'—C1—C6'116.8 (7)N1—C7—C8123.2 (6)
C6—C1—S1116.8 (6)N1—C7—H7118.4
C2—C1—S1117.7 (5)C8—C7—H7118.4
C2'—C1—S1121.8 (5)C9—C8—C13117.8 (6)
C6'—C1—S1121.4 (5)C9—C8—C7121.3 (6)
C3—C2—C1117.3 (10)C13—C8—C7120.9 (6)
C3—C2—H2A121.4O4—C9—C8121.9 (6)
C1—C2—H2A121.4O4—C9—C10117.7 (7)
C2—C3—C4123.0 (10)C8—C9—C10117.7 (6)
C2—C3—H3118.5C8—C9—O4'116.2 (6)
C4—C3—H3118.5C10—C9—O4'122.7 (7)
C3'—C2'—C1121.9 (9)C11—C10—C9123.8 (7)
C3'—C2'—H2'119.0C11—C10—H10118.1
C1—C2'—H2'119.0C9—C10—H10118.1
C4—C3'—C2'117.6 (10)C12—C11—C10119.1 (7)
C4—C3'—H3'121.2C12—C11—H11120.5
C2'—C3'—H3'121.2C10—C11—H11120.5
C5'—C4—C3'124.4 (8)C11—C12—C13119.9 (8)
C5'—C4—N1121.3 (6)C11—C12—H12120.0
C3'—C4—N1114.1 (6)C13—C12—H12120.0
C3'—C4—C5109.2 (8)C8—C13—C12121.7 (8)
N1—C4—C5126.3 (6)C8—C13—H13119.2
C5'—C4—C3106.8 (8)C12—C13—H13119.2
N1—C4—C3119.1 (6)
O1—S1—C1—C6173.5 (9)C3'—C4—C5—C634.7 (15)
O3—S1—C1—C658.9 (9)N1—C4—C5—C6177.2 (9)
O2—S1—C1—C656.3 (9)C3—C4—C5—C63.6 (16)
O1—S1—C1—C27.4 (9)C2—C1—C6—C50.2 (17)
O3—S1—C1—C2120.2 (8)C2'—C1—C6—C537.8 (14)
O2—S1—C1—C2124.6 (8)C6'—C1—C6—C571.4 (15)
O1—S1—C1—C2'35.0 (9)S1—C1—C6—C5178.8 (9)
O3—S1—C1—C2'162.6 (8)C4—C5—C6—C13.0 (18)
O2—S1—C1—C2'82.2 (9)C3'—C4—C5'—C6'2.4 (19)
O1—S1—C1—C6'144.8 (9)N1—C4—C5'—C6'178.4 (10)
O3—S1—C1—C6'17.2 (9)C5—C4—C5'—C6'71.8 (15)
O2—S1—C1—C6'98.0 (9)C3—C4—C5'—C6'37.3 (15)
C6—C1—C2—C31.7 (17)C4—C5'—C6'—C11 (2)
C2'—C1—C2—C372.3 (14)C6—C1—C6'—C5'86.4 (17)
C6'—C1—C2—C338.2 (14)C2—C1—C6'—C5'39.1 (16)
S1—C1—C2—C3179.3 (9)C2'—C1—C6'—C5'0.2 (17)
C1—C2—C3—C41.0 (18)S1—C1—C6'—C5'180.0 (10)
C6—C1—C2'—C3'38.5 (15)C4—N1—C7—C8178.4 (6)
C2—C1—C2'—C3'85.4 (15)N1—C7—C8—C92.7 (11)
C6'—C1—C2'—C3'0.5 (16)N1—C7—C8—C13179.9 (8)
S1—C1—C2'—C3'179.7 (9)C13—C8—C9—O4159.1 (9)
C1—C2'—C3'—C40.6 (17)C7—C8—C9—O418.5 (11)
C2'—C3'—C4—C5'2.1 (17)C13—C8—C9—C101.8 (11)
C2'—C3'—C4—N1178.4 (9)C7—C8—C9—C10179.4 (8)
C2'—C3'—C4—C534.2 (14)C13—C8—C9—O4'161.6 (8)
C2'—C3'—C4—C371.5 (13)C7—C8—C9—O4'20.9 (11)
C7—N1—C4—C5'19.9 (12)O4—C9—C10—C11160.3 (10)
C7—N1—C4—C3'163.7 (9)C8—C9—C10—C111.4 (14)
C7—N1—C4—C522.8 (12)O4'—C9—C10—C11159.7 (10)
C7—N1—C4—C3156.4 (9)C9—C10—C11—C120.2 (15)
C2—C3—C4—C5'38.7 (16)C10—C11—C12—C130.4 (14)
C2—C3—C4—C3'87.5 (16)C9—C8—C13—C121.3 (13)
C2—C3—C4—N1179.1 (10)C7—C8—C13—C12178.9 (9)
C2—C3—C4—C51.5 (17)C11—C12—C13—C80.2 (14)
C5'—C4—C5—C688.1 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.822.172.917 (5)151
O4—H4···N10.822.012.665 (10)136
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H11NO4S
Mr277.29
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)4.8711 (5), 29.022 (3), 9.0356 (17)
β (°) 97.223 (2)
V3)1267.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.42 × 0.31 × 0.15
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.897, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
3185, 1952, 1656
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.121, 1.09
No. of reflections1952
No. of parameters213
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30
Absolute structureFlack (1983), 822 Friedel pairs
Absolute structure parameter0.06 (14)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.822.172.917 (5)151
O4—H4···N10.822.012.665 (10)136
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are grateful for research grant No. 02js40 from the Phytochemistry Key Laboratory of Shaanxi Province.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds