organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-1,2,4-Triazole-3-carboxamide

aDepartment of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou 545006, People's Republic of China
*Correspondence e-mail: chemical2008@yeah.net

(Received 3 April 2008; accepted 10 May 2008; online 17 May 2008)

Planar mol­ecules of the title compound, C3H4N4O, are organized into sheets by extensive N—H⋯O and N—H⋯N hydrogen bonding in the (101) plane of the crystal structure. These hydrogen bonds may also stabilize the mol­ecule in the Z form. The title compound is in the amide form, as shown by the C=O bond length [1.252 (2) Å].

Related literature

Azo compounds are widely utilized as dyes and analytical reagents (Malinauskas et al., 2000[Malinauskas, A., Niaura, G. & Bloxham, S. (2000). J. Colloid Interface Sci. 230, 122-127.]). The inter­actions of amide groups are of inter­est because of their importance in biochemical systems (Crespo et al., 2005[Crespo, L., Sanclimens, G., Pons, M., Giralt, E., Royo, M. & Albericio, F. (2005). Chem. Rev. 105, 1663-1681.]).

[Scheme 1]

Experimental

Crystal data
  • C3H4N4O

  • Mr = 112.10

  • Monoclinic, P 21 /n

  • a = 3.6944 (4) Å

  • b = 17.527 (3) Å

  • c = 7.0520 (17) Å

  • β = 94.4670 (10)°

  • V = 455.24 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 (2) K

  • 0.22 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.988

  • 2199 measured reflections

  • 807 independent reflections

  • 657 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.05

  • 807 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.21 3.065 (2) 173
N1—H1B⋯N4ii 0.86 2.22 3.010 (2) 154
N2—H2⋯O1iii 0.86 2.07 2.909 (2) 163
N2—H2⋯N3iii 0.86 2.54 3.055 (2) 120
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+2; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was obtained by the reaction of methyl 1H-1,2,4-triazole-3-carboxylate and ammonium hydroxide. The C=O bond length of 1.2524 (18) Å suggests that the title compound is in the amide form. N—H···O and N—H···N hydrogen bonds link molecules into infinite sheets. These sheets provide the two-dimensional network in and paralell to the {101} plane of the cell.

Related literature top

Azo compounds are widely utilized as dyes and analytical reagents (Malinauskas et al., 2000). The interactions of amide groups are of interest because of their importance in biochemical system (Crespo et al., 2005).

Experimental top

Added 20 ml 25% ammonium hydroxide to methyl 1H-1,2,4-triazole-3-carboxylate (20 mmol, 2540 mg) while stirring for 8 h at 353 K. The resulting white precipitate was filtered and washed several times with ethanol and dried in vacuo (yield 85%). Single crystals of C3H4N4O suitable for X-ray diffraction were obtained by slow evaporation of an 50% ethanol solution at room temperature over a period of one week.

Refinement top

The C– and N-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing showing the hydrogen bonded interactions as dashed lines.
1H-1,2,4-Triazole-3-carboxamide top
Crystal data top
C3H4N4OF(000) = 232
Mr = 112.10Dx = 1.636 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1200 reflections
a = 3.6944 (4) Åθ = 2.3–27.5°
b = 17.527 (3) ŵ = 0.13 mm1
c = 7.0520 (17) ÅT = 298 K
β = 94.467 (1)°Prism, colourless
V = 455.24 (14) Å30.22 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
807 independent reflections
Radiation source: fine-focus sealed tube657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 43
Tmin = 0.972, Tmax = 0.988k = 2018
2199 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.058P]
where P = (Fo2 + 2Fc2)/3
807 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C3H4N4OV = 455.24 (14) Å3
Mr = 112.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.6944 (4) ŵ = 0.13 mm1
b = 17.527 (3) ÅT = 298 K
c = 7.0520 (17) Å0.22 × 0.18 × 0.09 mm
β = 94.467 (1)°
Data collection top
Bruker SMART CCD
diffractometer
807 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
657 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.988Rint = 0.020
2199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
807 reflectionsΔρmin = 0.23 e Å3
73 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2702 (4)0.99272 (7)0.7168 (2)0.0381 (4)
H1A0.34041.02400.63320.046*
H1B0.17631.00980.81630.046*
N20.0498 (4)0.77481 (8)1.00884 (19)0.0330 (4)
H20.01620.72881.04600.040*
N30.1784 (4)0.79443 (7)0.84073 (18)0.0329 (4)
N40.0595 (4)0.89955 (8)1.01228 (18)0.0349 (4)
O10.4402 (3)0.88844 (6)0.55202 (16)0.0386 (4)
C10.3067 (4)0.91813 (8)0.6923 (2)0.0289 (4)
C20.1793 (4)0.87021 (8)0.8491 (2)0.0271 (4)
C30.0168 (5)0.83716 (9)1.1079 (2)0.0360 (4)
H30.10480.83701.22790.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0594 (10)0.0241 (8)0.0333 (8)0.0011 (6)0.0202 (7)0.0017 (5)
N20.0449 (9)0.0220 (7)0.0331 (8)0.0010 (5)0.0098 (6)0.0056 (5)
N30.0434 (8)0.0250 (8)0.0314 (7)0.0006 (5)0.0093 (6)0.0010 (5)
N40.0494 (9)0.0259 (8)0.0310 (8)0.0004 (6)0.0145 (6)0.0004 (5)
O10.0566 (8)0.0267 (6)0.0347 (7)0.0030 (5)0.0176 (5)0.0001 (5)
C10.0339 (9)0.0259 (9)0.0274 (8)0.0006 (6)0.0055 (6)0.0007 (6)
C20.0307 (8)0.0243 (8)0.0268 (8)0.0016 (6)0.0052 (6)0.0009 (6)
C30.0495 (10)0.0292 (9)0.0308 (8)0.0012 (7)0.0131 (7)0.0013 (7)
Geometric parameters (Å, º) top
N1—C11.3270 (19)N3—C21.3294 (19)
N1—H1A0.8600N4—C31.326 (2)
N1—H1B0.8600N4—C21.366 (2)
N2—C31.330 (2)O1—C11.2524 (18)
N2—N31.3553 (19)C1—C21.493 (2)
N2—H20.8600C3—H30.9300
C1—N1—H1A120.0O1—C1—C2121.15 (14)
C1—N1—H1B120.0N1—C1—C2114.62 (14)
H1A—N1—H1B120.0N3—C2—N4114.43 (13)
C3—N2—N3110.03 (13)N3—C2—C1121.94 (13)
C3—N2—H2125.0N4—C2—C1123.62 (14)
N3—N2—H2125.0N4—C3—N2110.81 (15)
C2—N3—N2102.40 (13)N4—C3—H3124.6
C3—N4—C2102.33 (13)N2—C3—H3124.6
O1—C1—N1124.23 (15)
C3—N2—N3—C20.33 (17)N1—C1—C2—N3176.10 (15)
N2—N3—C2—N40.05 (17)O1—C1—C2—N4174.46 (15)
N2—N3—C2—C1179.30 (13)N1—C1—C2—N44.7 (2)
C3—N4—C2—N30.23 (18)C2—N4—C3—N20.43 (18)
C3—N4—C2—C1179.00 (14)N3—N2—C3—N40.50 (19)
O1—C1—C2—N34.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.213.065 (2)173
N1—H1B···N4ii0.862.223.010 (2)154
N2—H2···O1iii0.862.072.909 (2)163
N2—H2···N3iii0.862.543.055 (2)120
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+2; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC3H4N4O
Mr112.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)3.6944 (4), 17.527 (3), 7.0520 (17)
β (°) 94.467 (1)
V3)455.24 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.22 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
2199, 807, 657
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.05
No. of reflections807
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.23

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.213.065 (2)173
N1—H1B···N4ii0.862.223.010 (2)154
N2—H2···O1iii0.862.072.909 (2)163
N2—H2···N3iii0.862.543.055 (2)120
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+2; (iii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Adult–Young Science Foundation of Guangxi Province (0447009), P. R. China.

References

First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrespo, L., Sanclimens, G., Pons, M., Giralt, E., Royo, M. & Albericio, F. (2005). Chem. Rev. 105, 1663–1681.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalinauskas, A., Niaura, G. & Bloxham, S. (2000). J. Colloid Interface Sci. 230, 122–127.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds