organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1003-o1004

(2R,3S)-2-Ammonio-3-hydr­­oxy-3-(4-nitro­phen­yl)propanoic acid chloride monohydrate

aLaboratoire de Chimie Physique, EA 4231, Faculté de Pharmacie, Université d'Auvergne, 63001 Clermont-Ferrand, France, bLaboratoire de Chimie Thérapeutique, EA 4231, Faculté de Pharmacie, Université d'Auvergne, 63001 Clermont-Ferrand, France, and cChimie Organique, Faculté de Chimie, 443011 Samara, Russian Federation
*Correspondence e-mail: vincent.gaumet@u-clermont1.fr

(Received 10 April 2008; accepted 30 April 2008; online 7 May 2008)

The title compound, C9H11N2O5+·Cl·H2O, was synthesized from (1S,2S)-2-amino-1-(4-nitro­phen­yl)propane-1,3-diol in four steps. As demonstrated by this work, no racemization occurs during this synthetic procedure. The crystal structure displays many inter­molecular hydrogen bonds between the acidic cation, chloride anions and the water mol­ecules, forming a three-dimensional network. An intra­molecular bond between the ammonium group and a hydroxyl O atom is also present.

Related literature

For related compounds see: Crich et al. (2007[Crich, D. & Li, W. (2007). J. Org. Chem. 72, 2387-2391.]); Di Giovanni et al. (1996[Di Giovanni, M. C., Misiti, D., Villani, C. & Zappia, G. (1996). Tetrahedron Asymmetry, 7, 2277-2286.]); Easton et al. (1996[Easton, C. J., Hutton, C. A., Merrett, M. C. & Tiekink, E. R. T. (1996). Tetrahedron, 52, 7025-7036.]); Madesclaire et al. (2006[Madesclaire, M., Coudert, P., Zaitsev, V. P. & Zaitseva, J. V. (2006). Chem. Heterocycl. Compd. 42, 506-511.], 2007[Madesclaire, M., Zaitsev, V. P., Zaitseva, J. V. & Sharipova, S. Kh. (2007). Chem. Heterocycl. Compd. 43, 1325-1332.]); Steinreiber et al. (2007[Steinreiber, J., Fesko, K., Reisinger, C., Schürmann, M., van Assema, F., Wolberg, M., Mink, D. & Griengl, H. (2007). Tetrahedron, 63, 918-926.]); Zaitsev et al. (1998[Zaitsev, V. P., Sharipova, S. Kh. & Zhuravleva, I. I. (1998). Pharm. Chem. J. 32, 157-160.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N2O5+·Cl·H2O

  • Mr = 280.66

  • Monoclinic, P 21

  • a = 8.1286 (17) Å

  • b = 5.056 (3) Å

  • c = 15.848 (3) Å

  • β = 104.626 (17)°

  • V = 630.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 (2) K

  • 0.49 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.872, Tmax = 0.931

  • 6026 measured reflections

  • 5517 independent reflections

  • 5058 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 63 reflections intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.09

  • 5517 reflections

  • 216 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2752 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H101⋯O13i 0.810 (17) 2.420 (16) 2.9259 (13) 121.5 (14)
N10—H101⋯Clii 0.810 (17) 2.489 (16) 3.2298 (11) 152.7 (15)
N10—H102⋯O14 0.83 (2) 2.265 (19) 2.6759 (14) 110.8 (16)
N10—H102⋯Cliii 0.83 (2) 2.62 (2) 3.3409 (14) 145.5 (16)
N10—H103⋯Cliv 0.97 (3) 2.28 (3) 3.2435 (14) 176 (3)
O12—H12⋯O17v 0.78 (5) 1.84 (5) 2.6168 (19) 171 (4)
O14—H14⋯Cl 0.82 (3) 2.25 (3) 3.0539 (13) 166 (3)
O17—H171⋯O16vi 0.78 (3) 2.33 (3) 3.069 (2) 159 (4)
O17—H172⋯Clvii 0.76 (3) 2.45 (3) 3.2170 (13) 178 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+2]; (v) [-x, y+{\script{3\over 2}}, -z+1]; (vi) x, y-1, z; (vii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1996[Harms, K. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Preparation of new α-amino acids are of constant interest. (1S,2S) and (1R,2R)-2-amino-1- (4-nitrophenyl)-1,3-propanediols, byproducts in the manufacture of the antibiotic Chloramphenicol (Zaitsev et al., 1998), can be used as starting materials in the preparation of corresponding α-amino acid isomers. The title compound (V) was synthesized from (1S,2S)-2-amino-1- (4-nitrophenyl)-1,3-propanediol (I) in four steps according to Figure 1. The intermediate formation of the 2-oxazolidinone derivative (III) allowed to protect both the adjacent amino and hydroxyl groups (Di Giovanni et al., 1996; Crich et al., 2007). The absolute configuration, determined using anomalous dispersion by chlorine, confirms the R and S configurations respectively for C2 and C3 atoms, confirming that no racemization occurs during this synthetic route (note that the Cahn-Ingold-Prelog designation at the α-carbon of the hydroxyl group is reversed by comparison with that of the starting material due to the change in priority of the substituents). As expected, the phenyl ring is planar, r.m.s. deviation from the best plane is ca. 0.007Å. The nitro group is coplanar with the adjacent phenyl ring (O15—N11—C7—C8 = 0.2 (3)° and O16—N11—C7—C8 = 179.9 (2)°). However, the σ bond C7—N11 (1.4704 (17) Å) shows that there is no appreciable π delocalization in the bond between the sp2 hybridized N11 and the phenyl ring.

Related literature top

For related compounds see: Crich et al. (2007); Di Giovanni et al. (1996); Easton et al. (1996); Madesclaire et al. (2006, 2007); Steinreiber et al. (2007); Zaitsev et al. (1998).

Experimental top

Figure 1 summarizes the synthetic route used (Madesclaire et al., 2006 and 2007). Crystals suitable for an X-ray diffraction study were obtained by slow evaporation of a water solution containing compound (V).

Refinement top

The structure was solved by direct methods and refined with anisotropic temperature factors for non-H atoms. All H atoms were found from difference Fourier maps. The H atoms were all refined isotropically with no constraints.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound (V).
[Figure 2] Fig. 2. The molecular structure of the title compound (V), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. Crystal packing of the title compound. Intra and intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the interactions have been omitted.
(2R,3S)-2-Ammonio-3-hydroxy-3-(4-nitrophenyl)propanoic acid chloride monohydrate top
Crystal data top
C9H11N2O5+·Cl·H2OF(000) = 292
Mr = 280.66Dx = 1.479 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.1286 (17) Åθ = 8–18°
b = 5.056 (3) ŵ = 0.33 mm1
c = 15.848 (3) ÅT = 293 K
β = 104.626 (17)°Elongated prism, colourless
V = 630.2 (4) Å30.49 × 0.25 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
5058 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 35.0°, θmin = 1.3°
ω/2θ scansh = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.872, Tmax = 0.931l = 2525
6026 measured reflections3 standard reflections every 63 reflections
5517 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.0202P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.60 e Å3
5517 reflectionsΔρmin = 0.63 e Å3
216 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.089 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2752 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (4)
Crystal data top
C9H11N2O5+·Cl·H2OV = 630.2 (4) Å3
Mr = 280.66Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.1286 (17) ŵ = 0.33 mm1
b = 5.056 (3) ÅT = 293 K
c = 15.848 (3) Å0.49 × 0.25 × 0.20 mm
β = 104.626 (17)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5058 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.872, Tmax = 0.9313 standard reflections every 63 reflections
6026 measured reflections intensity decay: 3%
5517 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.115Δρmax = 0.60 e Å3
S = 1.09Δρmin = 0.63 e Å3
5517 reflectionsAbsolute structure: Flack (1983), 2752 Friedel pairs
216 parametersAbsolute structure parameter: 0.00 (4)
1 restraint
Special details top

Experimental. North A.C.T., Phillips D.C. & Mathews F.S. (1968) Acta. Cryst. A24, 351. Number of psi-scan sets used was 4. Theta correction was applied. Weighted transmission curves were used. No Fourier smoothing was applied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.71520 (3)0.93514 (6)0.922526 (17)0.03591 (8)
C10.00336 (13)1.2561 (2)0.83505 (7)0.02674 (16)
C20.09722 (12)1.00092 (18)0.85613 (6)0.02405 (15)
C30.27337 (13)1.0067 (2)0.83713 (6)0.02743 (16)
C40.26848 (14)1.0458 (2)0.74189 (7)0.02986 (18)
C50.3717 (2)1.2362 (3)0.71889 (9)0.0427 (3)
C60.3767 (3)1.2672 (4)0.63235 (10)0.0499 (4)
C70.2774 (2)1.1044 (3)0.57084 (8)0.0415 (3)
C80.1743 (2)0.9107 (4)0.59137 (9)0.0506 (4)
C90.1720 (2)0.8796 (3)0.67820 (9)0.0459 (3)
N100.12271 (11)0.9477 (2)0.95052 (5)0.02702 (14)
N110.2786 (2)1.1354 (4)0.47874 (9)0.0569 (4)
O120.08726 (19)1.2705 (3)0.75327 (6)0.0491 (3)
O130.00519 (12)1.42165 (18)0.88974 (5)0.03491 (16)
O140.34476 (13)0.7557 (2)0.86696 (7)0.03708 (19)
O150.1882 (3)0.9890 (7)0.42545 (9)0.0966 (9)
O160.3691 (3)1.3062 (5)0.45945 (10)0.0847 (6)
H20.034 (3)0.872 (5)0.8304 (13)0.037 (5)*
H30.343 (3)1.127 (5)0.8692 (13)0.032 (5)*
H50.445 (3)1.340 (6)0.7648 (17)0.052 (6)*
H60.453 (4)1.424 (10)0.620 (2)0.091 (10)*
H80.112 (5)0.807 (10)0.548 (2)0.087 (10)*
H90.090 (4)0.766 (8)0.6899 (19)0.073 (9)*
H1010.032 (2)0.927 (4)0.9615 (10)0.025 (3)*
H1020.186 (2)0.816 (4)0.9639 (12)0.030 (4)*
H1030.174 (4)1.087 (7)0.9905 (16)0.058 (7)*
H120.147 (5)1.395 (10)0.743 (2)0.087 (10)*
H140.448 (3)0.778 (6)0.8856 (15)0.049 (6)*
O170.29100 (18)0.1787 (3)0.26402 (8)0.0491 (3)
H1710.307 (4)0.250 (8)0.309 (2)0.073 (9)*
H1720.290 (3)0.237 (6)0.2194 (17)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.03069 (11)0.03544 (12)0.03887 (13)0.00116 (10)0.00372 (8)0.00215 (10)
C10.0319 (4)0.0221 (3)0.0267 (4)0.0005 (3)0.0084 (3)0.0022 (3)
C20.0281 (3)0.0200 (3)0.0249 (3)0.0009 (3)0.0083 (3)0.0000 (2)
C30.0288 (4)0.0274 (4)0.0276 (4)0.0040 (3)0.0099 (3)0.0011 (3)
C40.0339 (4)0.0297 (4)0.0287 (4)0.0028 (3)0.0130 (3)0.0025 (3)
C50.0576 (7)0.0393 (6)0.0359 (5)0.0182 (6)0.0206 (5)0.0051 (4)
C60.0705 (10)0.0481 (7)0.0377 (6)0.0171 (7)0.0260 (6)0.0004 (5)
C70.0531 (7)0.0457 (7)0.0295 (5)0.0025 (5)0.0176 (5)0.0005 (4)
C80.0595 (8)0.0634 (10)0.0304 (5)0.0190 (8)0.0141 (5)0.0110 (6)
C90.0582 (8)0.0504 (8)0.0323 (5)0.0227 (6)0.0172 (5)0.0090 (5)
N100.0337 (3)0.0226 (3)0.0266 (3)0.0022 (3)0.0110 (2)0.0036 (3)
N110.0739 (10)0.0692 (11)0.0324 (5)0.0018 (8)0.0221 (6)0.0009 (6)
O120.0684 (7)0.0451 (5)0.0274 (4)0.0240 (5)0.0005 (4)0.0003 (4)
O130.0471 (4)0.0216 (3)0.0339 (3)0.0039 (3)0.0062 (3)0.0026 (3)
O140.0310 (4)0.0371 (4)0.0441 (5)0.0061 (3)0.0112 (3)0.0058 (4)
O150.1309 (16)0.127 (2)0.0336 (5)0.0504 (17)0.0250 (8)0.0151 (8)
O160.1330 (17)0.0846 (12)0.0465 (7)0.0305 (13)0.0414 (9)0.0055 (8)
O170.0652 (7)0.0431 (5)0.0357 (5)0.0145 (5)0.0070 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—O131.2078 (14)C7—C81.380 (2)
C1—O121.3053 (14)C7—N111.4704 (17)
C1—C21.5188 (15)C8—C91.3898 (18)
C2—N101.4821 (12)C8—H80.91 (4)
C2—C31.5360 (14)C9—H90.94 (4)
C2—H20.87 (2)N10—H1010.810 (17)
C3—O141.4253 (16)N10—H1020.83 (2)
C3—C41.5128 (14)N10—H1030.97 (3)
C3—H30.90 (2)N11—O151.219 (3)
C4—C51.3851 (17)N11—O161.222 (3)
C4—C91.3931 (18)O12—H120.78 (5)
C5—C61.3913 (19)O14—H140.82 (3)
C5—H50.97 (3)O17—H1710.78 (3)
C6—C71.372 (2)O17—H1720.76 (3)
C6—H61.05 (4)
O13—C1—O12125.15 (11)C5—C6—H6115.3 (17)
O13—C1—C2122.31 (10)C6—C7—C8122.79 (12)
O12—C1—C2112.53 (9)C6—C7—N11119.42 (14)
N10—C2—C1107.85 (8)C8—C7—N11117.79 (14)
N10—C2—C3107.55 (8)C7—C8—C9118.33 (14)
C1—C2—C3114.68 (8)C7—C8—H8119 (3)
N10—C2—H2104.6 (14)C9—C8—H8123 (3)
C1—C2—H2108.4 (15)C8—C9—C4120.22 (13)
C3—C2—H2113.1 (14)C8—C9—H9117.0 (19)
O14—C3—C4110.69 (9)C4—C9—H9121.9 (19)
O14—C3—C2103.87 (8)C2—N10—H101109.8 (11)
C4—C3—C2114.02 (9)C2—N10—H102108.8 (13)
O14—C3—H3105.5 (14)H101—N10—H102112 (2)
C4—C3—H3109.3 (13)C2—N10—H103117.1 (17)
C2—C3—H3113.1 (13)H101—N10—H103102 (2)
C5—C4—C9119.76 (11)H102—N10—H103106 (2)
C5—C4—C3119.24 (10)O15—N11—O16123.43 (16)
C9—C4—C3120.81 (10)O15—N11—C7117.97 (18)
C4—C5—C6120.54 (13)O16—N11—C7118.60 (17)
C4—C5—H5118.4 (17)C1—O12—H12113 (2)
C6—C5—H5120.9 (17)C3—O14—H14107 (2)
C7—C6—C5118.32 (13)H171—O17—H172129 (4)
C7—C6—H6126.2 (17)
O15—N11—C7—C6179.5 (2)O14—C3—C4—C962.57 (15)
O16—N11—C7—C60.2 (3)O14—C3—C4—C5112.37 (13)
O15—N11—C7—C80.2 (3)C2—C3—C4—C954.08 (14)
O16—N11—C7—C8179.9 (2)C5—C4—C9—C82.4 (2)
O12—C1—C2—C384.78 (12)C3—C4—C9—C8177.27 (13)
O12—C1—C2—N10155.44 (11)C9—C4—C5—C61.6 (2)
O13—C1—C2—N1023.39 (14)C3—C4—C5—C6176.57 (15)
O13—C1—C2—C396.39 (12)C4—C5—C6—C70.2 (3)
C1—C2—C3—O14176.50 (9)C5—C6—C7—N11179.19 (18)
C1—C2—C3—C462.95 (11)C5—C6—C7—C80.5 (3)
N10—C2—C3—C4177.11 (8)C6—C7—C8—C90.2 (3)
N10—C2—C3—O1456.56 (10)N11—C7—C8—C9179.96 (17)
C2—C3—C4—C5130.98 (12)C7—C8—C9—C41.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H101···O13i0.810 (17)2.420 (16)2.9259 (13)121.5 (14)
N10—H101···Clii0.810 (17)2.489 (16)3.2298 (11)152.7 (15)
N10—H102···O140.83 (2)2.265 (19)2.6759 (14)110.8 (16)
N10—H102···Cliii0.83 (2)2.62 (2)3.3409 (14)145.5 (16)
N10—H103···Cliv0.97 (3)2.28 (3)3.2435 (14)176 (3)
O12—H12···O17v0.78 (5)1.84 (5)2.6168 (19)171 (4)
O14—H14···Cl0.82 (3)2.25 (3)3.0539 (13)166 (3)
O17—H171···O16vi0.78 (3)2.33 (3)3.069 (2)159 (4)
O17—H172···Clvii0.76 (3)2.45 (3)3.2170 (13)178 (3)
Symmetry codes: (i) x, y1/2, z+2; (ii) x1, y, z; (iii) x+1, y1/2, z+2; (iv) x+1, y+1/2, z+2; (v) x, y+3/2, z+1; (vi) x, y1, z; (vii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N2O5+·Cl·H2O
Mr280.66
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.1286 (17), 5.056 (3), 15.848 (3)
β (°) 104.626 (17)
V3)630.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.49 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.872, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
6026, 5517, 5058
Rint0.022
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.09
No. of reflections5517
No. of parameters216
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.60, 0.63
Absolute structureFlack (1983), 2752 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H101···O13i0.810 (17)2.420 (16)2.9259 (13)121.5 (14)
N10—H101···Clii0.810 (17)2.489 (16)3.2298 (11)152.7 (15)
N10—H102···O140.83 (2)2.265 (19)2.6759 (14)110.8 (16)
N10—H102···Cliii0.83 (2)2.62 (2)3.3409 (14)145.5 (16)
N10—H103···Cliv0.97 (3)2.28 (3)3.2435 (14)176 (3)
O12—H12···O17v0.78 (5)1.84 (5)2.6168 (19)171 (4)
O14—H14···Cl0.82 (3)2.25 (3)3.0539 (13)166 (3)
O17—H171···O16vi0.78 (3)2.33 (3)3.069 (2)159 (4)
O17—H172···Clvii0.76 (3)2.45 (3)3.2170 (13)178 (3)
Symmetry codes: (i) x, y1/2, z+2; (ii) x1, y, z; (iii) x+1, y1/2, z+2; (iv) x+1, y+1/2, z+2; (v) x, y+3/2, z+1; (vi) x, y1, z; (vii) x+1, y1/2, z+1.
 

References

First citationCrich, D. & Li, W. (2007). J. Org. Chem. 72, 2387–2391.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDi Giovanni, M. C., Misiti, D., Villani, C. & Zappia, G. (1996). Tetrahedron Asymmetry, 7, 2277–2286.  CrossRef CAS Google Scholar
First citationEaston, C. J., Hutton, C. A., Merrett, M. C. & Tiekink, E. R. T. (1996). Tetrahedron, 52, 7025–7036.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMadesclaire, M., Coudert, P., Zaitsev, V. P. & Zaitseva, J. V. (2006). Chem. Heterocycl. Compd. 42, 506–511.  CrossRef CAS Google Scholar
First citationMadesclaire, M., Zaitsev, V. P., Zaitseva, J. V. & Sharipova, S. Kh. (2007). Chem. Heterocycl. Compd. 43, 1325–1332.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinreiber, J., Fesko, K., Reisinger, C., Schürmann, M., van Assema, F., Wolberg, M., Mink, D. & Griengl, H. (2007). Tetrahedron, 63, 918–926.  Web of Science CrossRef CAS Google Scholar
First citationZaitsev, V. P., Sharipova, S. Kh. & Zhuravleva, I. I. (1998). Pharm. Chem. J. 32, 157–160.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1003-o1004
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds