metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[(1S,1S′,2R,2R′)-(+)-1,1′-di-tert-butyl-2,2′-di­phospho­lane-κ2P,P′]ruthenium(II)

aCollege of Chemistry, Central China Normal University, Wuhan, Hubei 430072, People's Republic of China, bCollege of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: haiyantao21@hotmail.com

(Received 29 February 2008; accepted 27 March 2008; online 3 May 2008)

In the title compound, [RuCl2(C16H32P2)2], the RuII ion is situated on a twofold rotation axis, so the asymmetric unit contains one half-mol­ecule. The slightly distorted octa­hedral environment of the Ru center is formed by four P atoms [Ru—P = 2.4417 (6) and 2.4544 (6) Å] from two different (1S,1S′,2R,2R′)-TangPhos ligands [(1S,1S′,2R,2R′)-TangPhos = (1S,1S′,2R,2R′)-(+)-1,1′-di-tert-butyl-2,2′-diphospho­lane] and two Cl atoms [Ru—Cl = 2.4267 (5) Å].

Related literature

For related literature, see: Ikariya et al. (1985[Ikariya, T., Ishii, Y., Kawano, H., Arai, T., Saburi, M., Yoshikawa, S. & Akutagawa, S. (1985). J. Chem. Soc. Chem. Commun. pp. 922-924.]); James & Fogg (1993[James, B. R. & Fogg, D. E. (1993). J. Organomet. Chem. 462, c21-c24.]); Stoop et al. (1999[Stoop, R. M., Bauer, C., Setz, P., Wörle, M., Wong, T. Y. H. & Mezzetti, A. (1999). Organometallics, 18, 5691-5700.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C16H32P2)2]

  • Mr = 744.72

  • Orthorhombic, C 2221

  • a = 11.8640 (14) Å

  • b = 20.669 (3) Å

  • c = 14.2274 (17) Å

  • V = 3488.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 108 (2) K

  • 0.24 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.863, Tmax = 0.921

  • 11542 measured reflections

  • 4164 independent reflections

  • 4018 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.06

  • 4164 reflections

  • 183 parameters

  • H-atom parameters not refined

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1750 Friedel pairs

  • Flack parameter: 0.00 (2)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, some chiral diphosphino ruthenium complexes have been synthesized and used as catalysts for the asymmetric reactions (Stoop et al., 1999; James et al., 1993). Herein, we report the synthesis and crystal structure of the title compound - the ruthenium(II) complex containing the chiral TangPhos ligand.

As shown in Fig. 1, the crystals of the title complex contain discrete [RuCl2(TangPhos)2] units with the metal center in a slightly distorted octahedral environment. The trans-axial positions of RuII environment are occupied by Cl1 and Cl1i atoms, and the equatorial positions are occupied by P1, P2, P1i, P2i atoms, respectively [symmetry code: (i) -x, y, -z + 1/2], from two different TangPhos ligands, resulting in two chelate rings, which assume a half-chair conformation with the tert-butyl in the less hindered equatorial positions. Similar conformations were found in previously reported related structures (Stoop et al., 1999; Ikariya et al., 1985).

Related literature top

For related literature, see: Ikariya et al. (1985); James & Fogg (1993); Stoop et al. (1999).

Experimental top

To a solution of [RuCl2(PPh)3] (96 mg, 0.1 mmol) in 2 ml of deoxygenated CH2Cl2 was added dropwise a solution of (1S,1S',2R,2R')-TangPhos, (56 mg, 0.2 mmol) in CH2Cl2 (1 ml). The resulting mixture was stirred at ambient temperature for 6 h. Deoxygenated ether (12 ml) was added into the vigorously stirring solution and kept for 6 h at room temperature. The resulting light brown precipitate was filtered, washed with ether (3 times with 10 ml), and dried under vacuum. Yield: 45 mg (56%). Crystals suitable for X-ray diffraction were obtained by diffusion of hexane into a CD2Cl2 solution of the above compound at room temperature.

Refinement top

All H atoms were positioned geometrically (C—H 0.98–1.00 Å), and treated as riding, with Uiso(H) = 1.2–1.5Ueq (C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (i) -x, y, -z + 1/2]. H atoms are omitted for clarity.
Dichloridobis[(1S,1S',2R,2R')-(+)-1,1'-di-tert-butyl-2,2'- diphospholane-κ2P,P']ruthenium(II) top
Crystal data top
[RuCl2(C16H32P2)2]F(000) = 1576
Mr = 744.72Dx = 1.418 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 5992 reflections
a = 11.8640 (14) Åθ = 2.4–28.2°
b = 20.669 (3) ŵ = 0.81 mm1
c = 14.2274 (17) ÅT = 108 K
V = 3488.8 (8) Å3Brick, orange
Z = 40.24 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4164 independent reflections
Radiation source: fine-focus sealed tube4018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1415
Tmin = 0.863, Tmax = 0.921k = 1727
11542 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters not refined
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2939P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
4164 reflectionsΔρmax = 0.83 e Å3
183 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1750 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
[RuCl2(C16H32P2)2]V = 3488.8 (8) Å3
Mr = 744.72Z = 4
Orthorhombic, C2221Mo Kα radiation
a = 11.8640 (14) ŵ = 0.81 mm1
b = 20.669 (3) ÅT = 108 K
c = 14.2274 (17) Å0.24 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4018 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.921Rint = 0.025
11542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters not refined
wR(F2) = 0.057Δρmax = 0.83 e Å3
S = 1.06Δρmin = 0.29 e Å3
4164 reflectionsAbsolute structure: Flack (1983), 1750 Friedel pairs
183 parametersAbsolute structure parameter: 0.00 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02414 (19)0.16346 (11)0.00952 (15)0.0256 (5)
H1A0.00590.12900.04970.038*
H1B0.08060.18830.04450.038*
H1C0.03730.19220.00980.038*
C20.0038 (3)0.08613 (11)0.12059 (16)0.0353 (6)
H2A0.07400.10860.13640.053*
H2B0.02910.06770.17780.053*
H2C0.01980.05140.07560.053*
C30.1820 (2)0.09489 (11)0.04344 (16)0.0257 (5)
H3A0.21770.07370.09730.039*
H3B0.23610.12430.01360.039*
H3C0.15800.06210.00210.039*
C40.07852 (18)0.13369 (11)0.07717 (15)0.0188 (4)
C50.21860 (15)0.15194 (10)0.24348 (17)0.0185 (4)
H5A0.20970.16490.31000.022*
H5B0.20310.10500.23840.022*
C60.33823 (17)0.16652 (12)0.21003 (18)0.0262 (5)
H6A0.39270.16160.26220.031*
H6B0.36010.13690.15840.031*
C70.33514 (17)0.23639 (12)0.17560 (17)0.0261 (5)
H7A0.40660.24740.14340.031*
H7B0.32500.26630.22930.031*
C80.23545 (18)0.24229 (10)0.10707 (15)0.0179 (4)
H80.25490.21760.04890.021*
C90.20454 (18)0.31083 (11)0.07802 (15)0.0185 (4)
H90.27600.33580.06950.022*
C100.13653 (19)0.31551 (11)0.01378 (14)0.0220 (5)
H10A0.18390.30270.06800.026*
H10B0.07020.28650.01120.026*
C110.09906 (19)0.38550 (11)0.02376 (15)0.0237 (5)
H11A0.04650.39040.07730.028*
H11B0.16470.41420.03380.028*
C120.04012 (19)0.40157 (10)0.06914 (15)0.0203 (5)
H12A0.04020.38870.06630.024*
H12B0.04420.44860.08170.024*
C130.2153 (2)0.42001 (11)0.21194 (17)0.0261 (5)
C140.3123 (2)0.39022 (14)0.26745 (19)0.0414 (7)
H14A0.35820.42470.29510.062*
H14B0.35900.36400.22530.062*
H14C0.28190.36280.31760.062*
C150.2678 (2)0.46048 (11)0.13264 (17)0.0291 (5)
H15A0.20780.48060.09540.044*
H15B0.31340.43240.09210.044*
H15C0.31580.49430.15980.044*
C160.1502 (3)0.46594 (13)0.2754 (2)0.0505 (9)
H16A0.11800.44170.32810.076*
H16B0.08950.48640.23940.076*
H16C0.20130.49930.29950.076*
Cl10.13351 (4)0.27771 (3)0.12078 (3)0.01700 (10)
P10.11419 (5)0.35562 (3)0.16379 (4)0.01581 (11)
P20.11916 (4)0.19819 (3)0.16823 (4)0.01347 (11)
Ru10.00000.277275 (10)0.25000.01108 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0294 (13)0.0265 (11)0.0207 (11)0.0048 (10)0.0060 (9)0.0074 (9)
C20.0464 (14)0.0316 (12)0.0279 (12)0.0175 (14)0.0162 (14)0.0125 (10)
C30.0352 (13)0.0209 (11)0.0209 (11)0.0099 (10)0.0033 (10)0.0011 (9)
C40.0241 (11)0.0182 (10)0.0142 (10)0.0018 (9)0.0029 (8)0.0020 (8)
C50.0201 (10)0.0212 (9)0.0141 (9)0.0048 (8)0.0021 (9)0.0025 (10)
C60.0168 (11)0.0359 (14)0.0260 (11)0.0088 (10)0.0036 (9)0.0107 (10)
C70.0132 (10)0.0342 (15)0.0310 (12)0.0006 (9)0.0012 (9)0.0117 (10)
C80.0166 (10)0.0211 (11)0.0159 (9)0.0012 (8)0.0046 (8)0.0031 (8)
C90.0181 (10)0.0208 (11)0.0166 (10)0.0011 (8)0.0045 (8)0.0041 (9)
C100.0285 (12)0.0242 (12)0.0133 (10)0.0052 (10)0.0058 (9)0.0023 (8)
C110.0304 (13)0.0240 (12)0.0166 (11)0.0015 (10)0.0039 (9)0.0061 (9)
C120.0247 (11)0.0162 (10)0.0199 (11)0.0009 (9)0.0015 (8)0.0037 (9)
C130.0326 (13)0.0224 (12)0.0234 (11)0.0126 (10)0.0024 (10)0.0004 (10)
C140.0485 (16)0.0439 (15)0.0317 (17)0.0285 (13)0.0166 (12)0.0120 (12)
C150.0348 (13)0.0212 (11)0.0315 (13)0.0111 (11)0.0056 (11)0.0024 (10)
C160.0582 (19)0.0429 (17)0.050 (2)0.0304 (15)0.0255 (15)0.0289 (14)
Cl10.0168 (2)0.0205 (2)0.0137 (2)0.0003 (2)0.00355 (16)0.0000 (2)
P10.0188 (3)0.0144 (3)0.0143 (3)0.0034 (2)0.0013 (2)0.0013 (2)
P20.0146 (3)0.0147 (2)0.0111 (2)0.0011 (2)0.0020 (2)0.0013 (2)
Ru10.01224 (10)0.01165 (10)0.00935 (9)0.0000.00015 (8)0.000
Geometric parameters (Å, º) top
C1—C41.522 (3)C10—C111.520 (3)
C1—H1A0.9800C10—H10A0.9900
C1—H1B0.9800C10—H10B0.9900
C1—H1C0.9800C11—C121.532 (3)
C2—C41.517 (3)C11—H11A0.9900
C2—H2A0.9800C11—H11B0.9900
C2—H2B0.9800C12—P11.868 (2)
C2—H2C0.9800C12—H12A0.9900
C3—C41.543 (3)C12—H12B0.9900
C3—H3A0.9800C13—C161.520 (4)
C3—H3B0.9800C13—C141.525 (3)
C3—H3C0.9800C13—C151.537 (3)
C4—P21.920 (2)C13—P11.918 (2)
C5—C61.527 (3)C14—H14A0.9800
C5—P21.858 (2)C14—H14B0.9800
C5—H5A0.9900C14—H14C0.9800
C5—H5B0.9900C15—H15A0.9800
C6—C71.525 (3)C15—H15B0.9800
C6—H6A0.9900C15—H15C0.9800
C6—H6B0.9900C16—H16A0.9800
C7—C81.538 (3)C16—H16B0.9800
C7—H7A0.9900C16—H16C0.9800
C7—H7B0.9900Cl1—Ru12.4267 (5)
C8—C91.521 (3)P1—Ru12.4417 (6)
C8—P21.869 (2)P2—Ru12.4544 (6)
C8—H81.0000Ru1—Cl1i2.4267 (5)
C9—C101.538 (3)Ru1—P1i2.4417 (6)
C9—P11.870 (2)Ru1—P2i2.4544 (6)
C9—H91.0000
C4—C1—H1A109.5C12—C11—H11A110.7
C4—C1—H1B109.5C10—C11—H11B110.7
H1A—C1—H1B109.5C12—C11—H11B110.7
C4—C1—H1C109.5H11A—C11—H11B108.8
H1A—C1—H1C109.5C11—C12—P1107.29 (15)
H1B—C1—H1C109.5C11—C12—H12A110.3
C4—C2—H2A109.5P1—C12—H12A110.3
C4—C2—H2B109.5C11—C12—H12B110.3
H2A—C2—H2B109.5P1—C12—H12B110.3
C4—C2—H2C109.5H12A—C12—H12B108.5
H2A—C2—H2C109.5C16—C13—C14109.1 (2)
H2B—C2—H2C109.5C16—C13—C15107.6 (2)
C4—C3—H3A109.5C14—C13—C15107.1 (2)
C4—C3—H3B109.5C16—C13—P1109.12 (17)
H3A—C3—H3B109.5C14—C13—P1112.12 (17)
C4—C3—H3C109.5C15—C13—P1111.66 (16)
H3A—C3—H3C109.5C13—C14—H14A109.5
H3B—C3—H3C109.5C13—C14—H14B109.5
C2—C4—C1108.6 (2)H14A—C14—H14B109.5
C2—C4—C3107.60 (19)C13—C14—H14C109.5
C1—C4—C3107.18 (17)H14A—C14—H14C109.5
C2—C4—P2109.67 (14)H14B—C14—H14C109.5
C1—C4—P2111.87 (15)C13—C15—H15A109.5
C3—C4—P2111.76 (15)C13—C15—H15B109.5
C6—C5—P2108.00 (15)H15A—C15—H15B109.5
C6—C5—H5A110.1C13—C15—H15C109.5
P2—C5—H5A110.1H15A—C15—H15C109.5
C6—C5—H5B110.1H15B—C15—H15C109.5
P2—C5—H5B110.1C13—C16—H16A109.5
H5A—C5—H5B108.4C13—C16—H16B109.5
C7—C6—C5105.35 (17)H16A—C16—H16B109.5
C7—C6—H6A110.7C13—C16—H16C109.5
C5—C6—H6A110.7H16A—C16—H16C109.5
C7—C6—H6B110.7H16B—C16—H16C109.5
C5—C6—H6B110.7C12—P1—C992.92 (10)
H6A—C6—H6B108.8C12—P1—C13101.48 (10)
C6—C7—C8107.28 (19)C9—P1—C13102.59 (10)
C6—C7—H7A110.3C12—P1—Ru1116.00 (7)
C8—C7—H7A110.3C9—P1—Ru1108.52 (7)
C6—C7—H7B110.3C13—P1—Ru1128.89 (8)
C8—C7—H7B110.3C5—P2—C892.89 (9)
H7A—C7—H7B108.5C5—P2—C4101.01 (10)
C9—C8—C7115.57 (18)C8—P2—C4102.11 (9)
C9—C8—P2113.76 (15)C5—P2—Ru1115.80 (8)
C7—C8—P2103.53 (14)C8—P2—Ru1108.73 (7)
C9—C8—H8107.9C4—P2—Ru1129.60 (7)
C7—C8—H8107.9Cl1i—Ru1—Cl1179.58 (3)
P2—C8—H8107.9Cl1i—Ru1—P190.913 (19)
C8—C9—C10114.56 (18)Cl1—Ru1—P188.806 (19)
C8—C9—P1114.98 (15)Cl1i—Ru1—P1i88.806 (19)
C10—C9—P1102.85 (14)Cl1—Ru1—P1i90.913 (19)
C8—C9—H9108.0P1—Ru1—P1i96.91 (3)
C10—C9—H9108.0Cl1i—Ru1—P2i91.107 (19)
P1—C9—H9108.0Cl1—Ru1—P2i89.175 (19)
C11—C10—C9107.00 (18)P1—Ru1—P2i177.969 (19)
C11—C10—H10A110.3P1i—Ru1—P2i83.341 (18)
C9—C10—H10A110.3Cl1i—Ru1—P289.175 (19)
C11—C10—H10B110.3Cl1—Ru1—P291.107 (19)
C9—C10—H10B110.3P1—Ru1—P283.341 (18)
H10A—C10—H10B108.6P1i—Ru1—P2177.969 (19)
C10—C11—C12105.02 (17)P2i—Ru1—P296.48 (3)
C10—C11—H11A110.7
P2—C5—C6—C733.0 (2)C9—C8—P2—C4110.84 (16)
C5—C6—C7—C850.9 (2)C7—C8—P2—C4122.93 (15)
C6—C7—C8—C9169.48 (18)C9—C8—P2—Ru128.74 (16)
C6—C7—C8—P244.4 (2)C7—C8—P2—Ru197.50 (14)
C7—C8—C9—C10159.29 (18)C2—C4—P2—C576.02 (19)
P2—C8—C9—C1081.1 (2)C1—C4—P2—C5163.42 (15)
C7—C8—C9—P181.9 (2)C3—C4—P2—C543.22 (17)
P2—C8—C9—P137.76 (19)C2—C4—P2—C8171.43 (17)
C8—C9—C10—C11171.88 (18)C1—C4—P2—C868.01 (17)
P1—C9—C10—C1146.39 (19)C3—C4—P2—C852.19 (17)
C9—C10—C11—C1253.0 (2)C2—C4—P2—Ru161.4 (2)
C10—C11—C12—P133.8 (2)C1—C4—P2—Ru159.14 (18)
C11—C12—P1—C96.50 (16)C3—C4—P2—Ru1179.34 (11)
C11—C12—P1—C1396.98 (16)C12—P1—Ru1—Cl1i160.02 (8)
C11—C12—P1—Ru1118.75 (14)C9—P1—Ru1—Cl1i97.09 (7)
C8—C9—P1—C12147.28 (16)C13—P1—Ru1—Cl1i27.34 (10)
C10—C9—P1—C1222.07 (15)C12—P1—Ru1—Cl119.66 (8)
C8—C9—P1—C13110.27 (16)C9—P1—Ru1—Cl183.23 (7)
C10—C9—P1—C13124.52 (15)C13—P1—Ru1—Cl1152.34 (10)
C8—C9—P1—Ru128.60 (16)C12—P1—Ru1—P1i71.11 (8)
C10—C9—P1—Ru196.61 (13)C9—P1—Ru1—P1i174.00 (8)
C16—C13—P1—C1277.9 (2)C13—P1—Ru1—P1i61.56 (10)
C14—C13—P1—C12161.05 (17)C12—P1—Ru1—P2110.92 (8)
C15—C13—P1—C1240.84 (19)C9—P1—Ru1—P28.03 (7)
C16—C13—P1—C9173.58 (18)C13—P1—Ru1—P2116.41 (10)
C14—C13—P1—C965.40 (19)C5—P2—Ru1—Cl1i20.56 (7)
C15—C13—P1—C954.81 (19)C8—P2—Ru1—Cl1i82.33 (7)
C16—C13—P1—Ru159.7 (2)C4—P2—Ru1—Cl1i153.05 (9)
C14—C13—P1—Ru161.3 (2)C5—P2—Ru1—Cl1159.76 (7)
C15—C13—P1—Ru1178.44 (13)C8—P2—Ru1—Cl197.35 (7)
C6—C5—P2—C86.72 (17)C4—P2—Ru1—Cl127.27 (9)
C6—C5—P2—C496.21 (17)C8—P2—Ru1—P18.68 (7)
C6—C5—P2—Ru1119.15 (15)C5—P2—Ru1—P2i70.46 (7)
C9—C8—P2—C5147.25 (16)C8—P2—Ru1—P2i173.36 (8)
C7—C8—P2—C521.02 (16)C4—P2—Ru1—P2i62.03 (9)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[RuCl2(C16H32P2)2]
Mr744.72
Crystal system, space groupOrthorhombic, C2221
Temperature (K)108
a, b, c (Å)11.8640 (14), 20.669 (3), 14.2274 (17)
V3)3488.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.24 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.863, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
11542, 4164, 4018
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.06
No. of reflections4164
No. of parameters183
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.83, 0.29
Absolute structureFlack (1983), 1750 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20702039).

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIkariya, T., Ishii, Y., Kawano, H., Arai, T., Saburi, M., Yoshikawa, S. & Akutagawa, S. (1985). J. Chem. Soc. Chem. Commun. pp. 922–924.  CrossRef Web of Science Google Scholar
First citationJames, B. R. & Fogg, D. E. (1993). J. Organomet. Chem. 462, c21–c24.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoop, R. M., Bauer, C., Setz, P., Wörle, M., Wong, T. Y. H. & Mezzetti, A. (1999). Organometallics, 18, 5691–5700.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds