metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(N,N′-di­phenyl­thio­urea)iodido­copper(I) monohydrate

aLiaocheng Vocational and Technical College, Liaocheng, Shandong 252000, People's Republic of China, bDongchang College of Liaocheng University, Liaocheng, Shandong 252000, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 18 March 2008; accepted 22 March 2008; online 3 May 2008)

In the title compound, [CuI(C13H12N2S)2]·H2O, each Cu(I) ion is coordinated by two S atoms [Cu—S 2.2282 (16), 2.2377 (15) Å] from two N,N′-diphenyl­thio­urea ligands and one iodide ion [Cu—I 2.5170 (11) Å] in a trigonal planar geometry. The uncoordinated water mol­ecules are involved in N—H⋯O hydrogen-bonding [N⋯O 2.947 (5), 3.055 (5) Å], which link the mol­ecules into chains extended in the [101] direction. These chains are further paired by weak inter­molecular O—H⋯S hydrogen bonds [O⋯S 3.490 (4) Å].

Related literature

For geometrical parameters in related crystal structures, see: Lobana et al. (2006[Lobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755-2763.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C13H12N2S)2]·H2O

  • Mr = 665.07

  • Triclinic, [P \overline 1]

  • a = 9.700 (4) Å

  • b = 12.490 (5) Å

  • c = 12.935 (5) Å

  • α = 91.489 (5)°

  • β = 108.110 (5)°

  • γ = 110.950 (5)°

  • V = 1374.4 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 298 (2) K

  • 0.28 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.592, Tmax = 0.704

  • 7290 measured reflections

  • 4804 independent reflections

  • 2999 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.085

  • S = 0.87

  • 4804 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1 0.86 2.87 3.706 (4) 166
N2—H2⋯O1i 0.86 2.14 2.947 (5) 156
N3—H3⋯I1 0.86 2.82 3.666 (4) 168
N4—H4⋯O1ii 0.86 2.38 3.055 (5) 136
O1—H1B⋯S2iii 0.85 2.64 3.490 (4) 179
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1; (iii) -x+1, -y, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this paper, we report the synthesis and the crystal structure of the title compound (I).

In (I) (Fig. 1), the Cu(I) ion is in a trigonal coordination environment formed by to two S atoms of two monodentate diphenylthiourea ligands and one iodine ion. The Cu-S [2.2282 (16), 2.2377 (15) Å] and Cu-I [2.5170 (11) Å] bond lengths agree well with those reported for the related compounds (Lobana et al., 2006).

The crystalline water molecules are involved in N—H···O hydrogen-bonding (Table 1), which link the molecules into chains extended in direction [101]. These chains are further paired (Fig. 2) by the weak intermolecular O—H···S hydrogen bonds (Table 1).

Related literature top

For geometrical parameters in related crystal structures, see: Lobana et al. (2006).

Experimental top

CuI (0.19 g 1 mmol) and diphenylthiourea (0.46 g 2 mmol) in 10 ml acetonitrile,refluxed for 24 h, then a colourless solution formed. After filtration, the solution was allowed to evaporate slowly. Crystals suitable for X-ray diffraction were obtained after several days.

Refinement top

All H atoms were placed in calculated positions (O-H 0.85 Å, N-H 0.86 Å, C-H 0.93 Å), and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SMART (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering and 40% probability displacement ellipsoids. H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing the paired hydrogen-bonded (dashed lines) chains. H atoms not involved in hydrogen-bonding are omitted for clarity.
Bis(N,N'-diphenylthiourea)iodidocopper(I) monohydrate top
Crystal data top
[CuI(C13H12N2S)2]·H2OZ = 2
Mr = 665.07F(000) = 664
Triclinic, P1Dx = 1.607 Mg m3
a = 9.700 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.490 (5) ÅCell parameters from 1949 reflections
c = 12.935 (5) Åθ = 2.4–22.1°
α = 91.489 (5)°µ = 2.10 mm1
β = 108.110 (5)°T = 298 K
γ = 110.950 (5)°Block, colourless
V = 1374.4 (9) Å30.28 × 0.19 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4804 independent reflections
Radiation source: fine-focus sealed tube2999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.592, Tmax = 0.704k = 1414
7290 measured reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0329P)2]
where P = (Fo2 + 2Fc2)/3
4804 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[CuI(C13H12N2S)2]·H2Oγ = 110.950 (5)°
Mr = 665.07V = 1374.4 (9) Å3
Triclinic, P1Z = 2
a = 9.700 (4) ÅMo Kα radiation
b = 12.490 (5) ŵ = 2.10 mm1
c = 12.935 (5) ÅT = 298 K
α = 91.489 (5)°0.28 × 0.19 × 0.18 mm
β = 108.110 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2999 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.704Rint = 0.031
7290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.87Δρmax = 0.58 e Å3
4804 reflectionsΔρmin = 0.45 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.05943 (7)0.11385 (5)0.77393 (5)0.04630 (19)
I10.17712 (4)0.33136 (3)0.82406 (3)0.05399 (14)
N10.0381 (4)0.2061 (3)0.5295 (3)0.0443 (11)
H10.02730.23490.59520.053*
N20.2538 (4)0.0540 (3)0.4163 (3)0.0436 (11)
H20.25710.09870.36690.052*
N30.2680 (4)0.1602 (3)1.0425 (3)0.0405 (10)
H30.23220.19660.99210.049*
N40.3157 (4)0.0053 (3)1.0771 (3)0.0406 (10)
H40.38450.03501.13850.049*
O10.6610 (4)0.1414 (3)0.2058 (3)0.0619 (11)
H1A0.68400.21050.19200.074*
H1B0.71590.11070.18580.074*
S10.12503 (15)0.01325 (10)0.61534 (11)0.0466 (4)
S20.11547 (15)0.01538 (10)0.87828 (11)0.0474 (4)
C10.1409 (5)0.0964 (4)0.5129 (4)0.0347 (12)
C20.0288 (6)0.2790 (4)0.4464 (4)0.0423 (13)
C30.1082 (7)0.3512 (4)0.4296 (5)0.0613 (16)
H3A0.17060.35260.47110.074*
C40.0948 (8)0.4228 (5)0.3497 (5)0.073 (2)
H4A0.14780.47290.33840.088*
C50.0044 (7)0.4203 (5)0.2876 (5)0.0701 (19)
H50.00430.46870.23450.084*
C60.0738 (8)0.3459 (6)0.3040 (6)0.085 (2)
H60.13420.34240.26150.102*
C70.0606 (6)0.2770 (5)0.3844 (5)0.0645 (17)
H70.11450.22750.39660.077*
C80.3704 (5)0.0610 (4)0.3884 (4)0.0379 (12)
C90.5254 (6)0.0777 (4)0.3680 (4)0.0470 (14)
H90.55290.01420.37290.056*
C100.6383 (6)0.1869 (5)0.3406 (5)0.0624 (17)
H100.74250.19770.32780.075*
C110.5994 (7)0.2808 (5)0.3318 (5)0.0687 (18)
H110.67720.35530.31240.082*
C120.4450 (8)0.2653 (5)0.3517 (5)0.0665 (18)
H120.41800.32900.34650.080*
C130.3309 (6)0.1546 (4)0.3791 (5)0.0512 (14)
H130.22670.14350.39140.061*
C140.2398 (5)0.0499 (4)1.0080 (4)0.0342 (12)
C150.3482 (5)0.2268 (4)1.1501 (5)0.0412 (13)
C160.4300 (7)0.3453 (4)1.1573 (5)0.0581 (16)
H160.43540.37781.09410.070*
C170.5030 (8)0.4140 (5)1.2591 (6)0.081 (2)
H170.55680.49351.26460.097*
C180.4967 (7)0.3661 (5)1.3517 (6)0.0724 (19)
H180.54690.41311.42010.087*
C190.4175 (6)0.2495 (5)1.3452 (5)0.0553 (15)
H190.41510.21731.40900.066*
C200.3410 (6)0.1801 (4)1.2436 (4)0.0444 (13)
H200.28440.10121.23880.053*
C210.2935 (6)0.1242 (4)1.0585 (4)0.0371 (12)
C220.4230 (6)0.1510 (4)1.0756 (4)0.0492 (14)
H220.52290.09271.09740.059*
C230.4029 (7)0.2666 (5)1.0598 (5)0.0631 (17)
H230.49030.28561.07110.076*
C240.2569 (8)0.3529 (5)1.0281 (5)0.0699 (18)
H240.24480.43001.01700.084*
C250.1277 (7)0.3252 (5)1.0125 (5)0.0673 (18)
H250.02790.38380.99100.081*
C260.1456 (6)0.2107 (4)1.0286 (5)0.0498 (14)
H260.05830.19201.01930.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0492 (4)0.0489 (4)0.0387 (4)0.0194 (3)0.0111 (3)0.0147 (3)
I10.0693 (3)0.0439 (2)0.0507 (3)0.02398 (19)0.0197 (2)0.01702 (19)
N10.044 (2)0.041 (2)0.033 (3)0.010 (2)0.001 (2)0.011 (2)
N20.043 (2)0.040 (2)0.039 (3)0.013 (2)0.005 (2)0.013 (2)
N30.053 (3)0.037 (2)0.030 (3)0.019 (2)0.008 (2)0.010 (2)
N40.048 (2)0.035 (2)0.028 (2)0.015 (2)0.001 (2)0.001 (2)
O10.065 (2)0.056 (2)0.050 (3)0.017 (2)0.008 (2)0.010 (2)
S10.0489 (8)0.0414 (8)0.0394 (8)0.0117 (6)0.0077 (7)0.0152 (7)
S20.0557 (8)0.0400 (7)0.0360 (8)0.0166 (7)0.0037 (7)0.0076 (7)
C10.037 (3)0.035 (3)0.033 (3)0.015 (2)0.012 (3)0.008 (2)
C20.046 (3)0.037 (3)0.041 (3)0.015 (3)0.011 (3)0.014 (3)
C30.080 (4)0.057 (4)0.058 (4)0.036 (3)0.028 (4)0.014 (3)
C40.112 (5)0.057 (4)0.066 (5)0.052 (4)0.025 (4)0.032 (4)
C50.092 (5)0.050 (4)0.058 (4)0.018 (3)0.021 (4)0.029 (3)
C60.103 (5)0.104 (5)0.086 (6)0.054 (5)0.062 (5)0.057 (5)
C70.074 (4)0.077 (4)0.070 (5)0.046 (4)0.039 (4)0.044 (4)
C80.039 (3)0.041 (3)0.029 (3)0.009 (2)0.012 (3)0.006 (2)
C90.042 (3)0.056 (3)0.041 (4)0.020 (3)0.011 (3)0.007 (3)
C100.041 (3)0.071 (4)0.062 (4)0.007 (3)0.020 (3)0.006 (4)
C110.064 (4)0.057 (4)0.059 (4)0.005 (3)0.020 (4)0.007 (3)
C120.086 (5)0.044 (4)0.070 (5)0.026 (4)0.028 (4)0.003 (3)
C130.052 (3)0.052 (4)0.052 (4)0.020 (3)0.022 (3)0.001 (3)
C140.034 (3)0.032 (3)0.032 (3)0.007 (2)0.012 (2)0.004 (2)
C150.043 (3)0.035 (3)0.047 (4)0.015 (2)0.018 (3)0.006 (3)
C160.082 (4)0.040 (3)0.055 (4)0.013 (3)0.039 (4)0.009 (3)
C170.097 (5)0.039 (3)0.090 (6)0.008 (3)0.050 (5)0.015 (4)
C180.084 (5)0.057 (4)0.061 (5)0.006 (4)0.031 (4)0.017 (4)
C190.057 (4)0.058 (4)0.043 (4)0.015 (3)0.016 (3)0.000 (3)
C200.047 (3)0.039 (3)0.045 (4)0.011 (3)0.018 (3)0.006 (3)
C210.050 (3)0.037 (3)0.026 (3)0.018 (3)0.013 (3)0.012 (2)
C220.049 (3)0.057 (4)0.045 (4)0.023 (3)0.017 (3)0.014 (3)
C230.081 (5)0.070 (4)0.065 (5)0.046 (4)0.039 (4)0.022 (4)
C240.098 (5)0.045 (4)0.069 (5)0.038 (4)0.019 (4)0.007 (3)
C250.064 (4)0.043 (4)0.077 (5)0.009 (3)0.013 (4)0.017 (3)
C260.050 (3)0.046 (3)0.058 (4)0.022 (3)0.019 (3)0.016 (3)
Geometric parameters (Å, º) top
Cu1—S12.2282 (16)C9—C101.360 (7)
Cu1—S22.2377 (15)C9—H90.9300
Cu1—I12.5170 (11)C10—C111.367 (7)
N1—C11.338 (5)C10—H100.9300
N1—C21.431 (6)C11—C121.377 (7)
N1—H10.8600C11—H110.9300
N2—C11.320 (6)C12—C131.378 (7)
N2—C81.425 (5)C12—H120.9300
N2—H20.8600C13—H130.9300
N3—C141.340 (5)C15—C201.367 (7)
N3—C151.427 (6)C15—C161.392 (7)
N3—H30.8600C16—C171.378 (8)
N4—C141.343 (5)C16—H160.9300
N4—C211.424 (5)C17—C181.362 (8)
N4—H40.8600C17—H170.9300
O1—H1A0.8500C18—C191.367 (7)
O1—H1B0.8500C18—H180.9300
S1—C11.708 (5)C19—C201.380 (7)
S2—C141.703 (5)C19—H190.9300
C2—C71.358 (7)C20—H200.9300
C2—C31.363 (6)C21—C221.368 (6)
C3—C41.389 (7)C21—C261.379 (6)
C3—H3A0.9300C22—C231.386 (7)
C4—C51.368 (8)C22—H220.9300
C4—H4A0.9300C23—C241.364 (7)
C5—C61.377 (8)C23—H230.9300
C5—H50.9300C24—C251.373 (7)
C6—C71.375 (7)C24—H240.9300
C6—H60.9300C25—C261.379 (7)
C7—H70.9300C25—H250.9300
C8—C131.367 (6)C26—H260.9300
C8—C91.378 (6)
S1—Cu1—S2106.87 (6)C10—C11—C12120.0 (5)
S1—Cu1—I1125.81 (4)C10—C11—H11120.0
S2—Cu1—I1127.32 (5)C12—C11—H11120.0
C1—N1—C2125.0 (4)C11—C12—C13119.5 (5)
C1—N1—H1117.5C11—C12—H12120.2
C2—N1—H1117.5C13—C12—H12120.2
C1—N2—C8124.3 (4)C8—C13—C12120.2 (5)
C1—N2—H2117.8C8—C13—H13119.9
C8—N2—H2117.8C12—C13—H13119.9
C14—N3—C15130.0 (4)N3—C14—N4118.1 (4)
C14—N3—H3115.0N3—C14—S2120.2 (4)
C15—N3—H3115.0N4—C14—S2121.6 (3)
C14—N4—C21126.3 (4)C20—C15—C16119.8 (5)
C14—N4—H4116.8C20—C15—N3122.9 (4)
C21—N4—H4116.8C16—C15—N3117.3 (5)
H1A—O1—H1B110.0C17—C16—C15119.3 (6)
C1—S1—Cu1112.56 (17)C17—C16—H16120.3
C14—S2—Cu1111.44 (16)C15—C16—H16120.3
N2—C1—N1118.9 (4)C18—C17—C16120.2 (5)
N2—C1—S1120.9 (4)C18—C17—H17119.9
N1—C1—S1120.3 (4)C16—C17—H17119.9
C7—C2—C3119.7 (5)C17—C18—C19120.7 (6)
C7—C2—N1119.9 (4)C17—C18—H18119.6
C3—C2—N1120.4 (5)C19—C18—H18119.6
C2—C3—C4119.3 (6)C18—C19—C20119.6 (6)
C2—C3—H3A120.4C18—C19—H19120.2
C4—C3—H3A120.4C20—C19—H19120.2
C5—C4—C3120.7 (5)C15—C20—C19120.3 (5)
C5—C4—H4A119.7C15—C20—H20119.9
C3—C4—H4A119.7C19—C20—H20119.9
C4—C5—C6119.8 (6)C22—C21—C26120.6 (5)
C4—C5—H5120.1C22—C21—N4118.5 (4)
C6—C5—H5120.1C26—C21—N4120.9 (4)
C7—C6—C5118.7 (6)C21—C22—C23119.0 (5)
C7—C6—H6120.7C21—C22—H22120.5
C5—C6—H6120.7C23—C22—H22120.5
C2—C7—C6121.9 (5)C24—C23—C22120.9 (5)
C2—C7—H7119.0C24—C23—H23119.5
C6—C7—H7119.0C22—C23—H23119.5
C13—C8—C9119.7 (5)C23—C24—C25119.7 (5)
C13—C8—N2120.8 (4)C23—C24—H24120.2
C9—C8—N2119.5 (4)C25—C24—H24120.2
C10—C9—C8120.2 (5)C24—C25—C26120.1 (5)
C10—C9—H9119.9C24—C25—H25119.9
C8—C9—H9119.9C26—C25—H25119.9
C9—C10—C11120.4 (5)C21—C26—C25119.6 (5)
C9—C10—H10119.8C21—C26—H26120.2
C11—C10—H10119.8C25—C26—H26120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I10.862.873.706 (4)166
N2—H2···O1i0.862.142.947 (5)156
N3—H3···I10.862.823.666 (4)168
N4—H4···O1ii0.862.383.055 (5)136
O1—H1B···S2iii0.852.643.490 (4)179
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CuI(C13H12N2S)2]·H2O
Mr665.07
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.700 (4), 12.490 (5), 12.935 (5)
α, β, γ (°)91.489 (5), 108.110 (5), 110.950 (5)
V3)1374.4 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.28 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.592, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
7290, 4804, 2999
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.085, 0.87
No. of reflections4804
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.45

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I10.862.873.706 (4)165.6
N2—H2···O1i0.862.142.947 (5)155.8
N3—H3···I10.862.823.666 (4)168.3
N4—H4···O1ii0.862.383.055 (5)135.9
O1—H1B···S2iii0.852.643.490 (4)179.4
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of Liaocheng University (X051002) for support.

References

First citationLobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755–2763.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds