organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Di­bromo-6,7-di­hydro-5H-dibenzo[c,e]thiepine

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, and bState Key Laboratory of Supramolecular Structures and Materials, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: hqzhang@ysu.edu.cn

(Received 5 April 2008; accepted 5 May 2008; online 10 May 2008)

In the title mol­ecule, C14H10Br2S, the two benzene rings form a dihedral angle of 48.35 (14)°. The seven-membered ring adopts a boat conformation. In the crystal structure, mol­ecules are related by translation along the b axis and exhibit C—H⋯π inter­actions.

Related literature

For the synthesis of dibenzo[c,e]thiepine derivatives, see: Truce et al. (1956[Truce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130-6137. ]). For the chiroptical properties of dibenzo[c,e]thiepine derivatives, see: Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C14H10Br2S

  • Mr = 370.10

  • Monoclinic, P 21 /c

  • a = 8.6629 (12) Å

  • b = 4.7219 (5) Å

  • c = 30.867 (3) Å

  • β = 93.720 (5)°

  • V = 1260.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.57 mm−1

  • T = 291 (2) K

  • 0.16 × 0.14 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.419, Tmax = 0.482 (expected range = 0.370–0.426)

  • 4858 measured reflections

  • 2850 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.078

  • S = 1.01

  • 2850 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14a⋯Cgi 0.97 2.69 3.446 (9) 136
Symmetry code: (i) x, y-1, z. Cg is the centroid of the benzene ring.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002[Rigaku/MSC and Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The dibenzo[c,e]thiepine derivatives (Truce et al. 1956) exhibit remarkable chiroptical properties (Tomascovic et al. 2000). Introducing Br on benzene ring of dibenzo[c,e]thiepine can expand the field of their application, such as photoluminescence, electro-luminescence devices and nonlinear potics etc. Herein we present the crysal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The molecule exhibits twisted conformation with a dihedral angle of 48.35 (14)° between two benzene rings, while central 7-member ring has a boat conformation. The crystal structure of (I) is stabilized by C—H···π interactions (Table 1).

Related literature top

For the synthesis of dibenzo[c,e]thiepine derivatives, see: Truce et al. (1956). For the chiroptical properties of dibenzo[c,e]thiepine derivatives, see: Tomascovic et al. (2000), respectively. Cg is the centroid of the benzene ring.

Experimental top

The title compound has been prepared in a four-step reaction. Step 1: the 2,7-dibromophenanthrenequinone was obtained by direct bromination of phenanthrenequinone in the presence of n-bromosuccinimide in H2SO4. Step 2: the oxidation of 2,7-dibromophenanthrenequinone in the presence of pure oxygen and Cu(I)Cl gave 4,4-dibromodiphenic acid. Step 3: the reduction of 4,4-dibromodiphenic acid using NaBH4 gave 4,4'-dibromo-2,2'-bis-(hydroxymethyl)-bipheny. Step 4: the reacton of 4,4'-dibromo-2,2'-bis-(hydroxymethyl)-biphenyl and sodium sulfate nonahydrate gave the title compound. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a ethanol solution.

Refinement top

H atoms were geometrically positioned (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids.
3,9-Dibromo-6,7-dihydro-5H-dibenzo[c,e]thiepine top
Crystal data top
C14H10Br2SF(000) = 720
Mr = 370.10Dx = 1.951 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3351 reflections
a = 8.6629 (12) Åθ = 5.0–54.9°
b = 4.7219 (5) ŵ = 6.57 mm1
c = 30.867 (3) ÅT = 291 K
β = 93.720 (5)°Block, colourless
V = 1260.0 (3) Å30.16 × 0.14 × 0.13 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2850 independent reflections
Radiation source: fine-focus sealed tube1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.420, Tmax = 0.482k = 66
4858 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
2850 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C14H10Br2SV = 1260.0 (3) Å3
Mr = 370.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6629 (12) ŵ = 6.57 mm1
b = 4.7219 (5) ÅT = 291 K
c = 30.867 (3) Å0.16 × 0.14 × 0.13 mm
β = 93.720 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2850 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1840 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.482Rint = 0.045
4858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.01Δρmax = 0.79 e Å3
2850 reflectionsΔρmin = 0.54 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41895 (5)0.61945 (10)0.055440 (15)0.03375 (14)
Br21.35085 (6)1.76323 (11)0.226693 (14)0.03785 (14)
S31.09057 (13)1.1401 (3)0.04915 (4)0.0327 (3)
C121.2114 (5)1.4013 (9)0.16192 (12)0.0249 (9)
H12A1.31311.35830.15640.030*
C10.5734 (5)0.8581 (9)0.08152 (14)0.0275 (10)
C50.6896 (5)1.0665 (9)0.14581 (13)0.0276 (10)
H5A0.69051.09570.17560.033*
C111.0890 (4)1.2718 (9)0.13757 (12)0.0229 (9)
C90.9122 (5)1.5295 (9)0.17965 (12)0.0264 (10)
H9A0.81151.57240.18610.032*
C20.6805 (4)0.9909 (9)0.05755 (13)0.0267 (9)
H2A0.67590.96700.02760.032*
C30.7955 (5)1.1598 (9)0.07744 (13)0.0258 (10)
C71.1815 (5)1.5920 (9)0.19398 (13)0.0278 (10)
C100.9356 (4)1.3383 (9)0.14641 (12)0.0217 (9)
C81.0326 (5)1.6569 (9)0.20317 (13)0.0318 (11)
H8A1.01371.78540.22500.038*
C60.5753 (5)0.9018 (9)0.12604 (13)0.0284 (10)
H6A0.50000.82040.14220.034*
C141.1210 (5)1.0451 (9)0.10551 (12)0.0270 (10)
H14A1.05590.88350.11100.032*
H14B1.22770.98500.11080.032*
C40.8037 (5)1.1905 (9)0.12287 (13)0.0267 (10)
C130.9066 (4)1.3159 (9)0.05066 (12)0.0264 (10)
H13A0.92291.50460.06250.032*
H13B0.86111.33550.02130.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0284 (2)0.0346 (3)0.0382 (3)0.0011 (2)0.00183 (18)0.0060 (2)
Br20.0429 (3)0.0450 (3)0.0250 (2)0.0075 (2)0.00297 (19)0.0022 (2)
S30.0311 (6)0.0410 (7)0.0266 (5)0.0019 (5)0.0057 (5)0.0010 (5)
C120.027 (2)0.023 (2)0.024 (2)0.001 (2)0.0027 (17)0.006 (2)
C10.025 (2)0.025 (2)0.032 (2)0.009 (2)0.0002 (18)0.004 (2)
C50.030 (2)0.033 (3)0.021 (2)0.005 (2)0.0075 (17)0.0017 (19)
C110.027 (2)0.021 (2)0.0209 (19)0.0035 (19)0.0031 (17)0.0046 (19)
C90.029 (2)0.026 (2)0.025 (2)0.0064 (19)0.0061 (18)0.0033 (19)
C20.026 (2)0.030 (2)0.024 (2)0.006 (2)0.0037 (18)0.002 (2)
C30.028 (2)0.024 (2)0.026 (2)0.0075 (19)0.0071 (18)0.0032 (19)
C70.033 (2)0.028 (2)0.022 (2)0.004 (2)0.0004 (18)0.005 (2)
C100.023 (2)0.022 (2)0.020 (2)0.0029 (18)0.0016 (16)0.0039 (17)
C80.048 (3)0.025 (3)0.023 (2)0.000 (2)0.009 (2)0.0008 (19)
C60.027 (2)0.030 (2)0.029 (2)0.001 (2)0.0065 (18)0.005 (2)
C140.024 (2)0.025 (3)0.032 (2)0.0041 (18)0.0034 (18)0.0042 (19)
C40.026 (2)0.029 (3)0.025 (2)0.0058 (19)0.0044 (17)0.0021 (19)
C130.031 (2)0.030 (3)0.0186 (19)0.0030 (19)0.0047 (17)0.0019 (18)
Geometric parameters (Å, º) top
Br1—C11.889 (4)C9—C101.392 (5)
Br2—C71.906 (4)C9—H9A0.9300
S3—C141.800 (4)C2—C31.388 (6)
S3—C131.800 (4)C2—H2A0.9300
C12—C71.375 (6)C3—C41.407 (5)
C12—C111.400 (5)C3—C131.502 (5)
C12—H12A0.9300C7—C81.373 (6)
C1—C21.375 (6)C10—C41.488 (6)
C1—C61.389 (6)C8—H8A0.9300
C5—C61.371 (6)C6—H6A0.9300
C5—C41.382 (6)C14—H14A0.9700
C5—H5A0.9300C14—H14B0.9700
C11—C101.409 (5)C13—H13A0.9700
C11—C141.496 (6)C13—H13B0.9700
C9—C81.370 (6)
C14—S3—C1399.46 (18)C9—C10—C11118.1 (4)
C7—C12—C11120.1 (4)C9—C10—C4121.4 (4)
C7—C12—H12A120.0C11—C10—C4120.4 (4)
C11—C12—H12A120.0C9—C8—C7119.0 (4)
C2—C1—C6120.0 (4)C9—C8—H8A120.5
C2—C1—Br1121.8 (3)C7—C8—H8A120.5
C6—C1—Br1118.2 (3)C5—C6—C1119.1 (4)
C6—C5—C4122.2 (4)C5—C6—H6A120.4
C6—C5—H5A118.9C1—C6—H6A120.4
C4—C5—H5A118.9C11—C14—S3116.1 (3)
C12—C11—C10119.3 (4)C11—C14—H14A108.3
C12—C11—C14120.1 (4)S3—C14—H14A108.3
C10—C11—C14120.3 (4)C11—C14—H14B108.3
C8—C9—C10122.2 (4)S3—C14—H14B108.3
C8—C9—H9A118.9H14A—C14—H14B107.4
C10—C9—H9A118.9C5—C4—C3118.4 (4)
C1—C2—C3120.9 (4)C5—C4—C10120.0 (4)
C1—C2—H2A119.5C3—C4—C10121.5 (4)
C3—C2—H2A119.5C3—C13—S3112.8 (3)
C2—C3—C4119.2 (4)C3—C13—H13A109.0
C2—C3—C13120.4 (4)S3—C13—H13A109.0
C4—C3—C13120.4 (4)C3—C13—H13B109.0
C8—C7—C12121.2 (4)S3—C13—H13B109.0
C8—C7—Br2119.8 (3)H13A—C13—H13B107.8
C12—C7—Br2119.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14a···Cgi0.972.693.446 (9)136
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H10Br2S
Mr370.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.6629 (12), 4.7219 (5), 30.867 (3)
β (°) 93.720 (5)
V3)1260.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.57
Crystal size (mm)0.16 × 0.14 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.420, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
4858, 2850, 1840
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.078, 1.01
No. of reflections2850
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.54

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14a···Cgi0.972.693.446 (9)136
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge the financial support from the National Science Foundation of China (grant Nos. 20125421, 90101026, 50303007 and 60207003) and the Ministry of Science and Technology of China (grant Nos. 2002cb6134003 and 2003cb3147032).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar
First citationTruce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130–6137.   CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds