organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Quinol­yl)quinolinium nitrate

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 17 April 2008; accepted 29 April 2008; online 3 May 2008)

In the cation of the title compound, C18H13N2+·NO3, the two bicyclic ring systems form a dihedral angle of 3.84 (4)°. The nitrate anion is disordered over two orientations in a 0.9:0.1 ratio. In the crystal structure, the cations form stacks along the a axis, with short inter­molecular contacts [C⋯C = 3.330 (3) and 3.345 (4) Å], and link to the anions via N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Smith et al. (1999[Smith, G., Pascoe, C. E., Kennard, C. H. L. & Byriel, K. A. (1999). Aust. J. Chem. 52, 71-74.]); Zafar et al. (2000[Zafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419-8427.]); Rafizadeh et al. (2006[Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034-o5035.]); Yousefi et al. (2007[Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.]); Parlow & Hartl (1979[Parlow, A. & Hartl, H. (1979). Acta Cryst. B35, 1930-1933.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N2+·NO3

  • Mr = 319.31

  • Monoclinic, P 21 /c

  • a = 6.9756 (6) Å

  • b = 10.6408 (9) Å

  • c = 19.1226 (15) Å

  • β = 94.399 (2)°

  • V = 1415.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • 0.45 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: none

  • 15078 measured reflections

  • 3739 independent reflections

  • 2115 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.136

  • S = 0.97

  • 3739 reflections

  • 229 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.91 1.92 2.766 (2) 153

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has been considerable interest in proton transfer systems and their structures (Smith et al., 1999; Zafar et al., 2000; Rafizadeh et al., 2006; Yousefi et al., 2007). To our knowledge, there is only one proton-transfer system with 2,2'-biquinolinyl, such as [(biq.H)(I2Cl3)] [biq.H = 2-(2-quinolinyl)quinolinium], which was structurally characterized (Parlow & Hartl, 1979). Herewith we report the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one cation and one anion (Fig. 1). In the cation, two bicycles form a dihedral angle of 3.84 (4)%. In the crystal structure, the cations form stacks along the a axis with short intermolecular contacts [C···C = 3.330 (3) and 3.345 (4)Å] linking the anions via N—H···O hydrogen bonds.

Related literature top

For related literature, see: Smith et al. (1999); Zafar et al. (2000); Rafizadeh et al. (2006); Yousefi et al. (2007); Parlow & Hartl (1979).

Experimental top

For the preparation of the title compound, (I), a solution of 2,2'-biquinolinyl (0.20 g, 0.78 mmol) in HNO3 0.5 M (10 ml) was added to a solution of La(NO3)3.6H2O, (0.11 g, 0.26 mmol) in water (5 ml) and the resulting yellow solution was stirred at 333 K for 2 h. Then, it was left to evaporate slowly at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion in a solution of yellow precipitated in DMSO after one week (yield 0.19 g, 76.2%, m.p 496–497 K).

Refinement top

C-bound H atoms were geometrically positioned (C-H 0.95 Å). The H atom of NH group was located on a difference Fourier map, but placed in idealized position (N-H 0.91 Å). All H atoms were refined in riding model approximation, with Uiso(H) = 1.2 Ueq of the parent atom. The NO3 anion was treated as disordered between two orientations with the occupancies fixed to 0.9 and 0.1, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of (I) showing the atomic numbering and 50% probability displacement ellipsoids. Only major part of the disordered nitrate anion is shown.
2-(2-Quinolyl)quinolinium nitrate top
Crystal data top
C18H13N2+·NO3F(000) = 664
Mr = 319.31Dx = 1.499 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 937 reflections
a = 6.9756 (6) Åθ = 3–29°
b = 10.6408 (9) ŵ = 0.11 mm1
c = 19.1226 (15) ÅT = 120 K
β = 94.399 (2)°Block, yellow
V = 1415.2 (2) Å30.45 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2115 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 29.0°, θmin = 2.1°
ω scansh = 99
15078 measured reflectionsk = 1414
3739 independent reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.136H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.46P]
where P = (Fo2 + 2Fc2)/3
3739 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H13N2+·NO3V = 1415.2 (2) Å3
Mr = 319.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9756 (6) ŵ = 0.11 mm1
b = 10.6408 (9) ÅT = 120 K
c = 19.1226 (15) Å0.45 × 0.30 × 0.25 mm
β = 94.399 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2115 reflections with I > 2σ(I)
15078 measured reflectionsRint = 0.038
3739 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0573 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.97Δρmax = 0.31 e Å3
3739 reflectionsΔρmin = 0.29 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2846 (2)0.12303 (14)0.47447 (7)0.0261 (3)
N20.21783 (19)0.05200 (13)0.56913 (7)0.0245 (3)
H2N0.22490.03160.58020.029*
C10.3241 (2)0.21681 (17)0.42885 (9)0.0265 (4)
C20.3386 (3)0.34167 (17)0.45393 (10)0.0320 (4)
H2A0.31800.35930.50150.038*
C30.3821 (3)0.43694 (19)0.41010 (10)0.0352 (5)
H3A0.39200.52050.42740.042*
C40.4124 (3)0.4124 (2)0.33902 (10)0.0347 (5)
H4A0.44480.47940.30930.042*
C50.3955 (3)0.29307 (19)0.31289 (10)0.0329 (4)
H5A0.41270.27800.26480.040*
C60.3524 (2)0.19166 (18)0.35718 (9)0.0283 (4)
C70.3393 (3)0.06604 (19)0.33471 (9)0.0319 (4)
H7A0.35530.04600.28710.038*
C80.3037 (3)0.02721 (18)0.38088 (9)0.0307 (4)
H8A0.29810.11260.36630.037*
C90.2754 (2)0.00614 (17)0.45085 (9)0.0243 (4)
C100.2313 (2)0.09095 (17)0.50285 (9)0.0249 (4)
C110.2028 (3)0.21806 (17)0.48705 (10)0.0309 (4)
H11A0.21230.24710.44050.037*
C120.1613 (3)0.30107 (17)0.53859 (10)0.0321 (4)
H12A0.14130.38730.52730.038*
C130.1480 (2)0.26001 (17)0.60813 (9)0.0272 (4)
C140.1044 (2)0.34060 (17)0.66293 (10)0.0313 (4)
H14A0.08260.42740.65390.038*
C150.0931 (3)0.29430 (18)0.72935 (10)0.0332 (4)
H15A0.06210.34920.76600.040*
C160.1272 (3)0.16592 (18)0.74375 (10)0.0326 (4)
H16A0.12070.13550.79020.039*
C170.1696 (2)0.08437 (17)0.69156 (9)0.0285 (4)
H17A0.19280.00200.70150.034*
C180.1781 (2)0.13100 (17)0.62339 (9)0.0248 (4)
N30.2376 (3)0.27946 (17)0.62588 (8)0.0385 (4)
O10.1506 (3)0.17769 (16)0.63037 (10)0.0433 (5)0.90
O20.1410 (3)0.37683 (15)0.60925 (9)0.0502 (5)0.90
O30.4157 (3)0.2874 (2)0.63555 (9)0.0555 (5)0.90
O1'0.0850 (18)0.2168 (18)0.6230 (13)0.060 (7)*0.10
O2'0.264 (3)0.3897 (8)0.6450 (11)0.077 (6)*0.10
O3'0.3749 (19)0.2024 (14)0.6346 (9)0.054 (4)*0.10
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0253 (8)0.0271 (8)0.0258 (8)0.0003 (6)0.0022 (6)0.0036 (6)
N20.0255 (8)0.0229 (7)0.0249 (8)0.0000 (6)0.0011 (6)0.0003 (6)
C10.0239 (9)0.0306 (10)0.0249 (9)0.0021 (7)0.0017 (7)0.0031 (8)
C20.0371 (11)0.0314 (10)0.0280 (10)0.0010 (8)0.0063 (8)0.0017 (8)
C30.0368 (11)0.0306 (10)0.0384 (11)0.0008 (8)0.0044 (9)0.0054 (8)
C40.0289 (10)0.0431 (12)0.0323 (10)0.0004 (8)0.0027 (8)0.0144 (9)
C50.0274 (10)0.0473 (12)0.0239 (9)0.0000 (9)0.0010 (7)0.0069 (8)
C60.0214 (9)0.0393 (11)0.0243 (9)0.0021 (8)0.0014 (7)0.0027 (8)
C70.0286 (10)0.0442 (12)0.0230 (9)0.0017 (8)0.0035 (7)0.0013 (8)
C80.0329 (10)0.0318 (10)0.0273 (10)0.0010 (8)0.0029 (8)0.0046 (8)
C90.0214 (8)0.0288 (9)0.0226 (8)0.0006 (7)0.0001 (7)0.0005 (7)
C100.0203 (8)0.0292 (10)0.0251 (9)0.0016 (7)0.0013 (7)0.0017 (7)
C110.0332 (10)0.0299 (10)0.0295 (10)0.0002 (8)0.0026 (8)0.0047 (8)
C120.0310 (10)0.0240 (9)0.0412 (11)0.0010 (8)0.0029 (8)0.0041 (8)
C130.0215 (9)0.0282 (9)0.0319 (10)0.0015 (7)0.0027 (7)0.0018 (8)
C140.0280 (10)0.0241 (9)0.0417 (11)0.0014 (7)0.0024 (8)0.0046 (8)
C150.0290 (10)0.0336 (10)0.0375 (11)0.0009 (8)0.0053 (8)0.0118 (8)
C160.0339 (10)0.0364 (11)0.0278 (10)0.0036 (8)0.0048 (8)0.0024 (8)
C170.0287 (10)0.0288 (9)0.0282 (9)0.0013 (8)0.0027 (7)0.0003 (8)
C180.0203 (8)0.0258 (9)0.0283 (9)0.0016 (7)0.0017 (7)0.0036 (7)
N30.0534 (11)0.0360 (10)0.0272 (9)0.0011 (9)0.0102 (8)0.0040 (7)
O10.0697 (12)0.0249 (9)0.0380 (10)0.0089 (10)0.0211 (9)0.0020 (8)
O20.0790 (13)0.0276 (9)0.0460 (10)0.0114 (9)0.0186 (9)0.0005 (7)
O30.0514 (12)0.0705 (14)0.0440 (11)0.0145 (10)0.0011 (8)0.0099 (9)
Geometric parameters (Å, º) top
N1—C91.323 (2)C10—C111.397 (3)
N1—C11.367 (2)C11—C121.371 (3)
N2—C101.344 (2)C11—H11A0.9500
N2—C181.380 (2)C12—C131.410 (3)
N2—H2N0.910C12—H12A0.9500
C1—C21.413 (3)C13—C141.405 (2)
C1—C61.425 (2)C13—C181.416 (3)
C2—C31.364 (3)C14—C151.370 (3)
C2—H2A0.9500C14—H14A0.9500
C3—C41.416 (3)C15—C161.410 (3)
C3—H3A0.9500C15—H15A0.9500
C4—C51.366 (3)C16—C171.372 (3)
C4—H4A0.9500C16—H16A0.9500
C5—C61.418 (3)C17—C181.400 (2)
C5—H5A0.9500C17—H17A0.9500
C6—C71.405 (3)N3—O2'1.239 (5)
C7—C81.364 (3)N3—O31.245 (2)
C7—H7A0.9500N3—O11.247 (2)
C8—C91.413 (2)N3—O1'1.253 (5)
C8—H8A0.9500N3—O3'1.263 (5)
C9—C101.483 (2)N3—O21.263 (2)
N1···C18i3.606 (3)C6···C14i3.550 (4)
N1···C10ii3.388 (3)C18···C6ii3.330 (3)
C1···C13i3.345 (4)
C9—N1—C1118.36 (15)N2—C10—C9116.81 (15)
C10—N2—C18123.64 (15)C11—C10—C9124.27 (16)
C10—N2—H2N120.8C12—C11—C10120.19 (17)
C18—N2—H2N115.4C12—C11—H11A119.9
N1—C1—C2118.83 (16)C10—C11—H11A119.9
N1—C1—C6121.75 (16)C11—C12—C13120.75 (17)
C2—C1—C6119.42 (16)C11—C12—H12A119.6
C3—C2—C1120.24 (17)C13—C12—H12A119.6
C3—C2—H2A119.9C14—C13—C12123.24 (17)
C1—C2—H2A119.9C14—C13—C18118.36 (17)
C2—C3—C4120.60 (19)C12—C13—C18118.40 (16)
C2—C3—H3A119.7C15—C14—C13120.20 (17)
C4—C3—H3A119.7C15—C14—H14A119.9
C5—C4—C3120.51 (18)C13—C14—H14A119.9
C5—C4—H4A119.7C14—C15—C16120.56 (17)
C3—C4—H4A119.7C14—C15—H15A119.7
C4—C5—C6120.33 (17)C16—C15—H15A119.7
C4—C5—H5A119.8C17—C16—C15120.89 (18)
C6—C5—H5A119.8C17—C16—H16A119.6
C7—C6—C5123.57 (17)C15—C16—H16A119.6
C7—C6—C1117.54 (16)C16—C17—C18118.69 (17)
C5—C6—C1118.88 (17)C16—C17—H17A120.7
C8—C7—C6120.34 (17)C18—C17—H17A120.7
C8—C7—H7A119.8N2—C18—C17120.62 (16)
C6—C7—H7A119.8N2—C18—C13118.09 (16)
C7—C8—C9118.43 (17)C17—C18—C13121.29 (16)
C7—C8—H8A120.8O3—N3—O1122.3 (2)
C9—C8—H8A120.8O2'—N3—O1'128.7 (14)
N1—C9—C8123.57 (16)O2'—N3—O3'118.7 (14)
N1—C9—C10115.67 (15)O1'—N3—O3'107.1 (13)
C8—C9—C10120.77 (16)O3—N3—O2119.2 (2)
N2—C10—C11118.92 (16)O1—N3—O2118.5 (2)
C9—N1—C1—C2178.56 (16)N1—C9—C10—N24.2 (2)
C9—N1—C1—C60.9 (2)C8—C9—C10—N2176.18 (15)
N1—C1—C2—C3178.55 (17)N1—C9—C10—C11175.52 (16)
C6—C1—C2—C31.0 (3)C8—C9—C10—C114.1 (3)
C1—C2—C3—C40.3 (3)N2—C10—C11—C120.2 (3)
C2—C3—C4—C51.1 (3)C9—C10—C11—C12179.57 (16)
C3—C4—C5—C61.7 (3)C10—C11—C12—C130.4 (3)
C4—C5—C6—C7177.72 (18)C11—C12—C13—C14179.46 (17)
C4—C5—C6—C11.0 (3)C11—C12—C13—C180.2 (3)
N1—C1—C6—C70.3 (3)C12—C13—C14—C15179.80 (17)
C2—C1—C6—C7179.14 (16)C18—C13—C14—C150.5 (3)
N1—C1—C6—C5179.15 (16)C13—C14—C15—C160.7 (3)
C2—C1—C6—C50.3 (3)C14—C15—C16—C170.9 (3)
C5—C6—C7—C8177.74 (17)C15—C16—C17—C180.1 (3)
C1—C6—C7—C81.0 (3)C10—N2—C18—C17178.81 (15)
C6—C7—C8—C91.7 (3)C10—N2—C18—C130.6 (2)
C1—N1—C9—C80.2 (2)C16—C17—C18—N2179.18 (16)
C1—N1—C9—C10179.75 (15)C16—C17—C18—C131.4 (3)
C7—C8—C9—N11.1 (3)C14—C13—C18—N2178.98 (15)
C7—C8—C9—C10178.41 (16)C12—C13—C18—N20.3 (2)
C18—N2—C10—C110.4 (2)C14—C13—C18—C171.6 (2)
C18—N2—C10—C9179.86 (14)C12—C13—C18—C17179.08 (16)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.911.922.766 (2)153

Experimental details

Crystal data
Chemical formulaC18H13N2+·NO3
Mr319.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.9756 (6), 10.6408 (9), 19.1226 (15)
β (°) 94.399 (2)
V3)1415.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15078, 3739, 2115
Rint0.038
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.136, 0.97
No. of reflections3739
No. of parameters229
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.911.922.766 (2)153
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParlow, A. & Hartl, H. (1979). Acta Cryst. B35, 1930–1933.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Pascoe, C. E., Kennard, C. H. L. & Byriel, K. A. (1999). Aust. J. Chem. 52, 71–74.  CSD CrossRef CAS Google Scholar
First citationYousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419–8427.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds