organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-bromo-2-chloro­pyridine-3-carboxyl­ate

aSchool of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bJinan China Cotton Industry Co. Ltd, Jinan 250100, People's Republic of China
*Correspondence e-mail: yima_2008@yahoo.cn

(Received 18 April 2008; accepted 6 May 2008; online 14 May 2008)

The title compound, C7H5BrClNO2, crystallizes with two independent molecules in the asymmetric unit. In the absence of classical inter­molecular inter­actions, the crystal structure exhibits relatively short inter­molecular Br⋯O distances [3.143 (9) and 3.162 (9)Å].

Related literature

For the biological activity of the title compound, see: Colarusso & Narjes (2004[Colarusso, S. & Narjes, F. (2004). World Patent WO 04 110 442.]); Kim et al. (2006[Kim, Y., Close, J., Duggan, M. E., Hanney, B., Meissner, R. S., Musselman, J., Perkins, J. J. & Wang, J. B. (2006). World Patent WO 06 060 108.]). For related crystal structures, see McArdle et al. (1982[McArdle, J. V., de Laubenfels, E., Shorter, A. L. & Ammon, H. L. (1982). Polyhedron, 1, 471-474.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5BrClNO2

  • Mr = 250.48

  • Triclinic, P 1

  • a = 3.978 (2) Å

  • b = 8.153 (3) Å

  • c = 14.040 (2) Å

  • α = 96.89 (2)°

  • β = 96.20 (3)°

  • γ = 100.70 (2)°

  • V = 440.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 298 (2) K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.506, Tmax = 0.638

  • 2186 measured reflections

  • 1818 independent reflections

  • 1564 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.09

  • 1818 reflections

  • 217 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 70 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Selected interatomic distances (Å)

Br1⋯O3i 3.143 (9)
Br2⋯O1ii 3.162 (9)
Symmetry codes: (i) x-1, y-1, z+1; (ii) x-1, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The title compound, (I), is a useful intermediate for the synthesis of various bioactive compounds (Colarusso et al., 2004; Kim et al., 2006). In this paper, we report its crystal structure.

Compound (I) crystallizes with two independent molecules in the non-centrosymmetric triclinic unit cell (Fig. 1). The bond lengths and angles in the molecules are normal and in a good agreement with those reported previously (McArdle et al., 1982). The dihedral angles between the planes of the methoxycarbonyl group (C6/C7/O1/O2; C13/C23/O3/O4) and pyridine rings in the two independent molecules are 45.8 (2) and 44.0 (3)°, respectively. In the abscence of classical intermolecular interactions, the crystal packing exhibits relatively short intermolecular Br···O distances (Table 1).

Related literature top

For the biological activity of the title compound, see: Colarusso & Narjes (2004); Kim et al. (2006). For related crystal structures, see McArdle et al. (1982).

Experimental top

A solution of 5-bromo-2-hydroxynicotinic acid (0.138 mol) and N, N-dimethylformamide (0.138 mol) in thionyl chloride (160 mL) was refluxed for 2 h. Thionyl chloride was evaporated and the yellow residue dissolved in anhydrous dichloromethane (200 mL), then anhydrous methanol was added dropwise. The resulting mixture was refluxed for 1 h and evaporated to afford slightly yellow oil which crystallized upon standing at room temperature. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution at room temperature over a period of one week.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I) with atomic numbering and displacement ellipsoids drawn at the 40% probability level.
Methyl 5-bromo-2-chloropyridine-3-carboxylate top
Crystal data top
C7H5BrClNO2Z = 2
Mr = 250.48F(000) = 244
Triclinic, P1Dx = 1.890 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.978 (2) ÅCell parameters from 947 reflections
b = 8.153 (3) Åθ = 2.6–24.3°
c = 14.040 (2) ŵ = 4.93 mm1
α = 96.89 (2)°T = 298 K
β = 96.20 (3)°Block, colourless
γ = 100.70 (2)°0.16 × 0.14 × 0.10 mm
V = 440.2 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1818 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 43
Tmin = 0.506, Tmax = 0.639k = 99
2186 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0806P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1818 reflectionsΔρmax = 1.17 e Å3
217 parametersΔρmin = 0.90 e Å3
3 restraintsAbsolute structure: Flack (1983); 70 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C7H5BrClNO2γ = 100.70 (2)°
Mr = 250.48V = 440.2 (3) Å3
Triclinic, P1Z = 2
a = 3.978 (2) ÅMo Kα radiation
b = 8.153 (3) ŵ = 4.93 mm1
c = 14.040 (2) ÅT = 298 K
α = 96.89 (2)°0.16 × 0.14 × 0.10 mm
β = 96.20 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1818 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1564 reflections with I > 2σ(I)
Tmin = 0.506, Tmax = 0.639Rint = 0.017
2186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.130Δρmax = 1.17 e Å3
S = 1.09Δρmin = 0.90 e Å3
1818 reflectionsAbsolute structure: Flack (1983); 70 Friedel pairs
217 parametersAbsolute structure parameter: 0.01 (2)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.3498 (2)0.81123 (11)0.74398 (8)0.0523 (3)
Br20.3533 (3)1.31291 (12)0.24715 (8)0.0530 (3)
Cl10.8539 (9)0.7931 (4)0.3331 (2)0.0552 (7)
Cl21.2578 (8)1.5050 (4)0.1624 (2)0.0555 (7)
O11.083 (3)1.2390 (10)0.5287 (6)0.074 (3)
O20.762 (2)1.1535 (9)0.3865 (5)0.0522 (19)
O31.295 (3)1.8504 (10)0.0331 (6)0.080 (3)
O41.116 (2)1.8360 (9)0.1109 (5)0.0529 (19)
N10.579 (3)0.6646 (10)0.4701 (7)0.050 (2)
N20.843 (3)1.3036 (11)0.0259 (7)0.053 (2)
C10.703 (3)0.8099 (12)0.4449 (7)0.040 (2)
C20.735 (3)0.9674 (12)0.5010 (7)0.037 (2)
C30.627 (3)0.9656 (12)0.5894 (7)0.038 (2)
H3A0.64541.06630.63030.045*
C40.490 (3)0.8134 (12)0.6187 (7)0.042 (2)
C50.464 (3)0.6665 (14)0.5574 (8)0.055 (3)
H5A0.36580.56500.57640.066*
C60.880 (3)1.1312 (12)0.4727 (7)0.043 (2)
C70.885 (3)1.3097 (13)0.3515 (8)0.050 (3)
H7A0.77291.30620.28690.076*
H7B1.12971.32550.35110.076*
H7C0.83301.40150.39310.076*
C80.995 (3)1.4644 (13)0.0517 (8)0.042 (2)
C90.973 (3)1.5908 (12)0.0031 (7)0.039 (2)
C100.783 (3)1.5431 (12)0.0957 (7)0.042 (2)
H10A0.77061.62170.13810.050*
C110.616 (3)1.3777 (12)0.1223 (7)0.040 (2)
C120.647 (3)1.2631 (13)0.0611 (8)0.049 (3)
H12A0.52871.15230.08000.059*
C131.144 (3)1.7723 (13)0.0234 (7)0.042 (2)
C141.289 (3)2.0069 (11)0.1478 (8)0.047 (3)
H14A1.24482.03500.21300.071*
H14B1.20552.08240.10790.071*
H14C1.53342.01720.14700.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0550 (6)0.0621 (6)0.0479 (7)0.0190 (5)0.0166 (5)0.0206 (5)
Br20.0487 (6)0.0544 (6)0.0496 (7)0.0118 (4)0.0056 (5)0.0094 (5)
Cl10.068 (2)0.0575 (15)0.0389 (14)0.0144 (14)0.0110 (12)0.0028 (12)
Cl20.067 (2)0.0589 (16)0.0397 (14)0.0138 (14)0.0012 (12)0.0113 (12)
O10.092 (7)0.049 (4)0.064 (5)0.012 (5)0.013 (5)0.010 (4)
O20.058 (5)0.050 (4)0.047 (4)0.005 (4)0.004 (4)0.013 (3)
O30.115 (8)0.056 (5)0.059 (5)0.019 (5)0.029 (5)0.005 (4)
O40.073 (6)0.041 (4)0.042 (4)0.005 (4)0.014 (4)0.001 (3)
N10.059 (7)0.034 (5)0.053 (6)0.009 (4)0.006 (5)0.001 (4)
N20.066 (7)0.044 (5)0.048 (6)0.007 (5)0.012 (5)0.011 (4)
C10.035 (6)0.041 (6)0.043 (6)0.006 (4)0.007 (5)0.003 (5)
C20.033 (6)0.037 (5)0.040 (5)0.005 (4)0.002 (4)0.006 (4)
C30.042 (6)0.041 (5)0.031 (5)0.011 (4)0.007 (4)0.006 (4)
C40.039 (6)0.045 (6)0.043 (6)0.013 (4)0.002 (4)0.004 (4)
C50.057 (8)0.047 (6)0.057 (7)0.005 (5)0.001 (5)0.010 (5)
C60.043 (7)0.044 (6)0.035 (5)0.005 (5)0.001 (4)0.001 (4)
C70.070 (8)0.037 (6)0.049 (7)0.005 (5)0.024 (6)0.019 (5)
C80.049 (7)0.039 (6)0.041 (6)0.015 (5)0.015 (5)0.002 (4)
C90.047 (6)0.038 (5)0.033 (5)0.006 (5)0.013 (4)0.006 (4)
C100.051 (7)0.039 (5)0.037 (5)0.011 (5)0.012 (4)0.005 (4)
C110.031 (6)0.045 (6)0.044 (6)0.004 (4)0.004 (4)0.005 (4)
C120.049 (7)0.042 (6)0.052 (6)0.003 (5)0.009 (5)0.001 (5)
C130.038 (6)0.049 (6)0.039 (6)0.007 (5)0.006 (4)0.011 (4)
C140.060 (7)0.024 (5)0.051 (7)0.003 (5)0.000 (5)0.004 (4)
Geometric parameters (Å, º) top
Br1—C41.902 (11)C3—C41.389 (14)
Br2—C111.902 (10)C3—H3A0.9300
Cl1—C11.740 (10)C4—C51.370 (15)
Cl2—C81.736 (12)C5—H5A0.9300
O1—C61.215 (11)C7—H7A0.9600
O2—C61.296 (11)C7—H7B0.9600
O2—C71.439 (12)C7—H7C0.9600
O3—C131.215 (11)C8—C91.368 (14)
O4—C131.299 (13)C9—C101.403 (13)
O4—C141.441 (12)C9—C131.494 (14)
N1—C11.302 (12)C10—C111.376 (13)
N1—C51.351 (15)C10—H10A0.9300
N2—C81.327 (13)C11—C121.357 (13)
N2—C121.346 (14)C12—H12A0.9300
C1—C21.400 (13)C14—H14A0.9600
C2—C31.357 (13)C14—H14B0.9600
C2—C61.471 (13)C14—H14C0.9600
Br1···O3i3.143 (9)Br2···O1ii3.162 (9)
C6—O2—C7119.8 (8)H7A—C7—H7C109.5
C13—O4—C14119.5 (9)H7B—C7—H7C109.5
C1—N1—C5117.0 (9)N2—C8—C9125.6 (11)
C8—N2—C12116.7 (9)N2—C8—Cl2114.0 (8)
N1—C1—C2125.8 (9)C9—C8—Cl2120.4 (8)
N1—C1—Cl1113.3 (8)C8—C9—C10116.4 (9)
C2—C1—Cl1120.9 (7)C8—C9—C13126.8 (9)
C3—C2—C1116.1 (8)C10—C9—C13116.7 (8)
C3—C2—C6118.3 (9)C11—C10—C9118.6 (8)
C1—C2—C6125.6 (9)C11—C10—H10A120.7
C2—C3—C4120.0 (9)C9—C10—H10A120.7
C2—C3—H3A120.0C12—C11—C10120.1 (9)
C4—C3—H3A120.0C12—C11—Br2121.1 (7)
C5—C4—C3119.2 (10)C10—C11—Br2118.8 (7)
C5—C4—Br1121.0 (8)N2—C12—C11122.5 (9)
C3—C4—Br1119.8 (7)N2—C12—H12A118.8
N1—C5—C4122.0 (10)C11—C12—H12A118.8
N1—C5—H5A119.0O3—C13—O4124.2 (9)
C4—C5—H5A119.0O3—C13—C9121.9 (9)
O1—C6—O2123.3 (9)O4—C13—C9114.0 (8)
O1—C6—C2121.6 (9)O4—C14—H14A109.5
O2—C6—C2115.0 (8)O4—C14—H14B109.5
O2—C7—H7A109.5H14A—C14—H14B109.5
O2—C7—H7B109.5O4—C14—H14C109.5
H7A—C7—H7B109.5H14A—C14—H14C109.5
O2—C7—H7C109.5H14B—C14—H14C109.5
C5—N1—C1—C21.3 (16)C12—N2—C8—C90.8 (17)
C5—N1—C1—Cl1178.3 (8)C12—N2—C8—Cl2177.4 (8)
N1—C1—C2—C30.5 (16)N2—C8—C9—C102.7 (16)
Cl1—C1—C2—C3176.3 (7)Cl2—C8—C9—C10173.7 (8)
N1—C1—C2—C6179.1 (9)N2—C8—C9—C13179.3 (11)
Cl1—C1—C2—C62.4 (15)Cl2—C8—C9—C133.0 (15)
C1—C2—C3—C41.0 (14)C8—C9—C10—C114.3 (14)
C6—C2—C3—C4179.8 (10)C13—C9—C10—C11178.7 (9)
C2—C3—C4—C50.1 (15)C9—C10—C11—C122.6 (15)
C2—C3—C4—Br1178.4 (8)C9—C10—C11—Br2179.2 (8)
C1—N1—C5—C42.5 (16)C8—N2—C12—C112.8 (16)
C3—C4—C5—N12.0 (16)C10—C11—C12—N21.1 (16)
Br1—C4—C5—N1176.5 (8)Br2—C11—C12—N2177.1 (9)
C7—O2—C6—O12.9 (18)C14—O4—C13—O33.9 (17)
C7—O2—C6—C2179.6 (10)C14—O4—C13—C9175.8 (10)
C3—C2—C6—O143.6 (16)C8—C9—C13—O3133.7 (12)
C1—C2—C6—O1135.1 (12)C10—C9—C13—O342.9 (15)
C3—C2—C6—O2133.2 (10)C8—C9—C13—O446.0 (15)
C1—C2—C6—O248.2 (15)C10—C9—C13—O4137.4 (10)
Symmetry codes: (i) x1, y1, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC7H5BrClNO2
Mr250.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)3.978 (2), 8.153 (3), 14.040 (2)
α, β, γ (°)96.89 (2), 96.20 (3), 100.70 (2)
V3)440.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.93
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.506, 0.639
No. of measured, independent and
observed [I > 2σ(I)] reflections
2186, 1818, 1564
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.09
No. of reflections1818
No. of parameters217
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 0.90
Absolute structureFlack (1983); 70 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Selected interatomic distances (Å) top
Br1···O3i3.143 (9)Br2···O1ii3.162 (9)
Symmetry codes: (i) x1, y1, z+1; (ii) x1, y, z1.
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColarusso, S. & Narjes, F. (2004). World Patent WO 04 110 442.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, Y., Close, J., Duggan, M. E., Hanney, B., Meissner, R. S., Musselman, J., Perkins, J. J. & Wang, J. B. (2006). World Patent WO 06 060 108.  Google Scholar
First citationMcArdle, J. V., de Laubenfels, E., Shorter, A. L. & Ammon, H. L. (1982). Polyhedron, 1, 471–474.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds