organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Low-temperature redetermination of trans-cyclo­hexane-1,2-di­carboxylic acid

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 April 2008; accepted 30 April 2008; online 3 May 2008)

The mol­ecule of the title compound, C8H12O4, lies on a twofold rotation axis that passes through the mid-points of two opposite C—C bonds of the ring. Carboxyl groups of adjacent mol­ecules are linked by pairs of hydrogen bonds around a centre of inversion; this inter­action gives rise to a chain that runs along [101].

Related literature

Studies on the metal derivatives of trans-1,2-cyclo­hexa­ne­dicarboxylic acid refer to the room-temperature structure of Benedetti et al. (1969[Benedetti, E., Corradini, P., Perrone, C. & Post, B. (1969). J. Am. Chem. Soc. 91, 4072-4074.]). The absence of a preferred orientation (either axial or equatorial) of the carboxyl groups in cyclo­hexa­nedicarboxylic acids is discussed in the case of 1,3-cyclo­hexanedicarboxylic acid by van Koningsveld (1984[Koningsveld, H. van (1984). Acta Cryst. C40, 1857-1863.]). For the crystal structure of 1,4-cyclo­hexa­nedicarboxylic acid, see: Luger et al. (1972[Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706-710.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12O4

  • Mr = 172.18

  • Monoclinic, C 2/c

  • a = 5.585 (1) Å

  • b = 13.840 (3) Å

  • c = 10.035 (2) Å

  • β = 96.114 (3)°

  • V = 771.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 (2) K

  • 0.38 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 2320 measured reflections

  • 883 independent reflections

  • 715 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.07

  • 883 reflections

  • 59 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.85 (1) 1.81 (1) 2.662 (2) 178 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Crystallographic studies of the metal derivatives of trans-1,2-cyclohexanedicarboxylic acid occasionally refer to the room-temperature crystal structure of the dicarboxylic acid, which was reported in 1969. The report (Benedetti et al., 1969) contains typographical errors that have since been corrected in the Cambridge Structural Database (Version 5.29, Nov. 2007). The reported monoclinic cell dimensions can be transformed to 5.65 (1), b 13.34 (3), c 10.22 (3) Å; β 97.2 (2)°.

Whereas the low-temperature unit cell has a slightly larger volume compared with the room-temperature cell, the low-temperature cell has a much longer b-axis [13.840 (3) Å]. The bond distances and angles of room-temperature structure are normal; those of the present study are not significantly different despite the longer axis. Possibly, the expansion of this axis is a genuine observation. Moreover, the present study is able to establish the hydrogen bonding scheme of the compound (Scheme I, Fig. 1). Adjacent molecules are linked by a linear O–H···O hydrogen bond [2.662 (2) Å] into a chain (Fig. 2).

The crystal structures of 1,3- and 1,4-cyclohexanedicarboxylic acids have already been reported (van Koningsveld, 1984; Luger et al., 1972).

Related literature top

Studies on the metal derivatives of trans-1,2-cyclohexanedicarboxylic acid refer to the room temperature structure of Benedetti et al. (1969). The absence of a preferred orientation (either axial or equatorial) of the carboxyl groups in cyclohexanedicarboxylic acids is discussed in the case of the 1,3-cyclohexanedicarboxylic acid, see: van Koningsveld (1984). For the crystal structure of 1,4-cyclohexanedicarboxylic acid, see: Luger et al. (1972).

Experimental top

The commercially available acid was recrystallized from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 U(C). The acid H-atom was located in a difference Fourier map, and was isotropically refined with a distance restraint of O–H 0.85 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering and 70% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radiius. The unlabeled atoms are related to the labeled ones by 1 - x, y, 1/2 - z.
[Figure 2] Fig. 2. A portion of the crystal packing showing the hydrogen-bonded (dashed lines) chain.
trans-cyclohexane-1,2-dicarboxylic acid top
Crystal data top
C8H12O4F(000) = 368
Mr = 172.18Dx = 1.483 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 739 reflections
a = 5.585 (1) Åθ = 3.6–28.2°
b = 13.840 (3) ŵ = 0.12 mm1
c = 10.035 (2) ÅT = 100 K
β = 96.114 (3)°Strip, colourless
V = 771.3 (3) Å30.38 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
715 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ω scansh = 77
2320 measured reflectionsk = 1717
883 independent reflectionsl = 138
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2009P]
where P = (Fo2 + 2Fc2)/3
883 reflections(Δ/σ)max = 0.001
59 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C8H12O4V = 771.3 (3) Å3
Mr = 172.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 5.585 (1) ŵ = 0.12 mm1
b = 13.840 (3) ÅT = 100 K
c = 10.035 (2) Å0.38 × 0.06 × 0.04 mm
β = 96.114 (3)°
Data collection top
Bruker SMART APEX
diffractometer
715 reflections with I > 2σ(I)
2320 measured reflectionsRint = 0.035
883 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
883 reflectionsΔρmin = 0.28 e Å3
59 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0840 (2)0.1596 (1)0.0902 (1)0.0173 (3)
O20.4725 (2)0.1968 (1)0.0869 (1)0.0166 (3)
C10.3157 (3)0.1471 (1)0.1279 (2)0.0122 (3)
C20.3668 (2)0.0626 (1)0.2220 (2)0.0122 (4)
C30.2893 (3)0.0314 (1)0.1475 (2)0.0139 (4)
C40.3647 (3)0.1208 (1)0.2303 (2)0.0159 (4)
H1o0.068 (4)0.206 (1)0.035 (2)0.036 (6)*
H20.26760.07040.29860.015*
H3a0.11210.03150.12610.017*
H3b0.36260.03390.06200.017*
H4a0.27990.12180.31200.019*
H4b0.31840.17960.17760.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0124 (6)0.0179 (6)0.0205 (7)0.0008 (4)0.0027 (5)0.0074 (5)
O20.0149 (6)0.0153 (6)0.0186 (6)0.0017 (4)0.0028 (4)0.0048 (4)
C10.0140 (7)0.0112 (7)0.0107 (8)0.0012 (5)0.0025 (6)0.0034 (6)
C20.0115 (7)0.0118 (7)0.0126 (8)0.0003 (5)0.0025 (6)0.0004 (6)
C30.0138 (7)0.0141 (7)0.0134 (8)0.0013 (5)0.0012 (6)0.0014 (6)
C40.0170 (8)0.0109 (7)0.0190 (9)0.0011 (5)0.0012 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1—C11.321 (2)O1—H1o0.85 (1)
O2—C11.220 (2)C2—H21.0000
C1—C21.511 (2)C3—H3a0.9900
C2—C2i1.533 (3)C3—H3b0.9900
C2—C31.5397 (19)C4—H4a0.9900
C3—C41.523 (2)C4—H4b0.9900
C4—C4i1.521 (3)
O2—C1—O1123.1 (1)C3—C2—H2108.3
O2—C1—C2123.6 (1)C4—C3—H3a109.2
O1—C1—C2113.3 (1)C2—C3—H3a109.2
C1—C2—C2i109.9 (1)C4—C3—H3b109.2
C1—C2—C3109.0 (1)C2—C3—H3b109.2
C2i—C2—C3112.9 (1)H3a—C3—H3b107.9
C4—C3—C2112.0 (1)C4i—C4—H4a109.5
C4i—C4—C3110.5 (1)C3—C4—H4a109.5
C1—O1—H1o109 (1)C4i—C4—H4b109.5
C1—C2—H2108.3C3—C4—H4b109.5
C2i—C2—H2108.3H4a—C4—H4b108.1
O2—C1—C2—C2i11.2 (2)C1—C2—C3—C4172.7 (1)
O1—C1—C2—C2i171.2 (1)C2i—C2—C3—C450.2 (2)
O2—C1—C2—C3113.0 (2)C2—C3—C4—C4i56.6 (2)
O1—C1—C2—C364.6 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2ii0.85 (1)1.81 (1)2.662 (2)178 (2)
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC8H12O4
Mr172.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)5.585 (1), 13.840 (3), 10.035 (2)
β (°) 96.114 (3)
V3)771.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2320, 883, 715
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.07
No. of reflections883
No. of parameters59
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.85 (1)1.81 (1)2.662 (2)178 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We thank the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBenedetti, E., Corradini, P., Perrone, C. & Post, B. (1969). J. Am. Chem. Soc. 91, 4072–4074.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoningsveld, H. van (1984). Acta Cryst. C40, 1857–1863.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLuger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds