organic compounds
(E)-2-Hydroxy-3-methoxybenzaldehyde thiosemicarbazone
aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bFeng Cheng Senior High School, 271100 Laiwu, Shandong, People's Republic of China
*Correspondence e-mail: imlijikun@163.com
In the title compound, C9H11N3O2S, intramolecular O—H⋯O and N—H⋯N hydrogen bonds contribute to the planarity of the molecular skeleton. Intermolecular N—H⋯O hydrogen bonds link the molecules into zigzag chains along the b axis; these molecules are futher paired by π–π interactions [centroid–centroid distance 4.495 (5) Å]. The also exhibits weak intermolecular N—H⋯S and O—H⋯S hydrogen bonds.
Related literature
For related crystal structures, see: Joseph et al. (2006). For biological activities of thiosemicarbazone see: Kasuga et al. (2001); Fonari et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808014475/cv2411sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808014475/cv2411Isup2.hkl
The title compound was synthesized by the reaction of 2-hydroxy-3-methoxybenzaldehyde (0.152 g, 1 mmol) and hydrazinecarbothioamide (0.091 g, 1 mmol) in ethanol solution and stirred under reflux conditions (353 K) for 6 h. When cooled to the room temperature, the solution was filtered off and after a week orange crystals suitable for X-ray diffraction study were obtained. Yield, 0.199 g, 82%. m.p. 358–360 K.
Analysis found: C 47.94, H 4.95, N 18.62%; C9H11N3O2S requires: C 47.99, H 4.92, N 18.65%.
The H-atoms were geometrically positioned (C-H 0.93-0.96 Å, N-H 0.86 Å, O-H 0.82 Å), and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C-aromatic and N) and Uiso(H) = 1.5Ueq(C-methyl and O).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. |
C9H11N3O2S | F(000) = 472 |
Mr = 225.27 | Dx = 1.418 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 511 reflections |
a = 7.057 (3) Å | θ = 2.4–19.8° |
b = 14.673 (5) Å | µ = 0.29 mm−1 |
c = 10.738 (4) Å | T = 273 K |
β = 108.412 (7)° | Block, orange |
V = 1055.0 (7) Å3 | 0.15 × 0.12 × 0.10 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1872 independent reflections |
Radiation source: fine-focus sealed tube | 1023 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→6 |
Tmin = 0.958, Tmax = 0.972 | k = −17→17 |
5510 measured reflections | l = −9→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0089P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1872 reflections | Δρmax = 0.19 e Å−3 |
138 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.005 (2) |
C9H11N3O2S | V = 1055.0 (7) Å3 |
Mr = 225.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.057 (3) Å | µ = 0.29 mm−1 |
b = 14.673 (5) Å | T = 273 K |
c = 10.738 (4) Å | 0.15 × 0.12 × 0.10 mm |
β = 108.412 (7)° |
Bruker SMART CCD area-detector diffractometer | 1872 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1023 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.972 | Rint = 0.071 |
5510 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.19 e Å−3 |
1872 reflections | Δρmin = −0.28 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.0171 (2) | 0.35387 (8) | 0.55909 (10) | 0.0534 (5) | |
O1 | 0.8111 (5) | 0.65121 (18) | −0.0190 (3) | 0.0600 (10) | |
H1 | 0.7915 | 0.6940 | −0.0706 | 0.090* | |
O2 | 0.6495 (5) | 0.6610 (2) | −0.2733 (3) | 0.0637 (10) | |
N1 | 0.8421 (5) | 0.4185 (2) | 0.1879 (3) | 0.0423 (10) | |
N2 | 0.9111 (5) | 0.4247 (2) | 0.3218 (3) | 0.0464 (10) | |
H2 | 0.9351 | 0.4771 | 0.3595 | 0.056* | |
N3 | 0.9079 (6) | 0.2710 (2) | 0.3278 (3) | 0.0583 (12) | |
H3A | 0.8692 | 0.2716 | 0.2434 | 0.070* | |
H3B | 0.9248 | 0.2199 | 0.3692 | 0.070* | |
C1 | 0.9411 (7) | 0.3481 (3) | 0.3936 (4) | 0.0425 (11) | |
C2 | 0.8215 (7) | 0.4935 (3) | 0.1257 (4) | 0.0442 (12) | |
H2A | 0.8580 | 0.5480 | 0.1712 | 0.053* | |
C3 | 0.7403 (6) | 0.4938 (3) | −0.0173 (4) | 0.0383 (11) | |
C4 | 0.7340 (7) | 0.5738 (3) | −0.0851 (4) | 0.0410 (11) | |
C5 | 0.6465 (7) | 0.5770 (3) | −0.2212 (4) | 0.0443 (12) | |
C6 | 0.5703 (8) | 0.4995 (3) | −0.2877 (4) | 0.0556 (14) | |
H6 | 0.5123 | 0.5011 | −0.3784 | 0.067* | |
C7 | 0.5789 (8) | 0.4183 (3) | −0.2207 (4) | 0.0625 (15) | |
H7 | 0.5275 | 0.3655 | −0.2669 | 0.075* | |
C8 | 0.6621 (7) | 0.4148 (3) | −0.0874 (4) | 0.0552 (14) | |
H8 | 0.6667 | 0.3599 | −0.0434 | 0.066* | |
C9 | 0.5673 (8) | 0.6720 (3) | −0.4120 (4) | 0.0628 (15) | |
H9A | 0.6335 | 0.6316 | −0.4551 | 0.094* | |
H9B | 0.5859 | 0.7339 | −0.4351 | 0.094* | |
H9C | 0.4272 | 0.6582 | −0.4392 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0790 (10) | 0.0454 (7) | 0.0340 (6) | 0.0035 (7) | 0.0154 (6) | 0.0006 (5) |
O1 | 0.100 (3) | 0.0310 (16) | 0.0406 (17) | −0.0114 (18) | 0.0107 (17) | −0.0004 (14) |
O2 | 0.092 (3) | 0.054 (2) | 0.0415 (19) | −0.0039 (19) | 0.0147 (17) | 0.0101 (15) |
N1 | 0.055 (3) | 0.041 (2) | 0.0303 (19) | 0.0000 (18) | 0.0133 (17) | −0.0019 (16) |
N2 | 0.068 (3) | 0.038 (2) | 0.032 (2) | 0.000 (2) | 0.0133 (18) | −0.0004 (16) |
N3 | 0.098 (4) | 0.039 (2) | 0.032 (2) | −0.001 (2) | 0.012 (2) | 0.0005 (16) |
C1 | 0.053 (3) | 0.037 (2) | 0.036 (2) | 0.003 (2) | 0.012 (2) | 0.005 (2) |
C2 | 0.056 (4) | 0.035 (2) | 0.042 (2) | 0.000 (2) | 0.016 (2) | 0.0029 (19) |
C3 | 0.046 (3) | 0.036 (3) | 0.032 (2) | 0.004 (2) | 0.011 (2) | 0.0028 (18) |
C4 | 0.043 (3) | 0.038 (3) | 0.040 (2) | 0.003 (2) | 0.012 (2) | −0.001 (2) |
C5 | 0.056 (3) | 0.042 (3) | 0.035 (2) | 0.001 (2) | 0.014 (2) | 0.008 (2) |
C6 | 0.069 (4) | 0.061 (3) | 0.033 (3) | −0.004 (3) | 0.010 (2) | −0.006 (2) |
C7 | 0.087 (4) | 0.045 (3) | 0.049 (3) | −0.006 (3) | 0.013 (3) | −0.011 (2) |
C8 | 0.074 (4) | 0.043 (3) | 0.045 (3) | −0.003 (3) | 0.013 (2) | −0.001 (2) |
C9 | 0.063 (4) | 0.074 (3) | 0.047 (3) | 0.004 (3) | 0.011 (2) | 0.017 (2) |
S1—C1 | 1.688 (4) | C2—H2A | 0.9300 |
O1—C4 | 1.358 (4) | C3—C4 | 1.375 (5) |
O1—H1 | 0.8200 | C3—C8 | 1.396 (5) |
O2—C5 | 1.357 (5) | C4—C5 | 1.397 (5) |
O2—C9 | 1.426 (5) | C5—C6 | 1.360 (6) |
N1—C2 | 1.271 (5) | C6—C7 | 1.382 (6) |
N1—N2 | 1.367 (4) | C6—H6 | 0.9300 |
N2—C1 | 1.342 (5) | C7—C8 | 1.365 (6) |
N2—H2 | 0.8600 | C7—H7 | 0.9300 |
N3—C1 | 1.315 (5) | C8—H8 | 0.9300 |
N3—H3A | 0.8600 | C9—H9A | 0.9600 |
N3—H3B | 0.8600 | C9—H9B | 0.9600 |
C2—C3 | 1.460 (5) | C9—H9C | 0.9600 |
C1···C9i | 3.425 (7) | C2···C4i | 3.445 (7) |
C4—O1—H1 | 109.5 | C3—C4—C5 | 120.8 (4) |
C5—O2—C9 | 118.7 (3) | O2—C5—C6 | 126.7 (4) |
C2—N1—N2 | 116.0 (3) | O2—C5—C4 | 113.7 (4) |
C1—N2—N1 | 119.2 (3) | C6—C5—C4 | 119.5 (4) |
C1—N2—H2 | 120.4 | C5—C6—C7 | 120.1 (4) |
N1—N2—H2 | 120.4 | C5—C6—H6 | 119.9 |
C1—N3—H3A | 120.0 | C7—C6—H6 | 119.9 |
C1—N3—H3B | 120.0 | C8—C7—C6 | 120.8 (4) |
H3A—N3—H3B | 120.0 | C8—C7—H7 | 119.6 |
N3—C1—N2 | 116.3 (4) | C6—C7—H7 | 119.6 |
N3—C1—S1 | 123.5 (3) | C7—C8—C3 | 120.0 (4) |
N2—C1—S1 | 120.2 (3) | C7—C8—H8 | 120.0 |
N1—C2—C3 | 119.8 (4) | C3—C8—H8 | 120.0 |
N1—C2—H2A | 120.1 | O2—C9—H9A | 109.5 |
C3—C2—H2A | 120.1 | O2—C9—H9B | 109.5 |
C4—C3—C8 | 118.8 (4) | H9A—C9—H9B | 109.5 |
C4—C3—C2 | 119.7 (4) | O2—C9—H9C | 109.5 |
C8—C3—C2 | 121.4 (4) | H9A—C9—H9C | 109.5 |
O1—C4—C3 | 119.8 (4) | H9B—C9—H9C | 109.5 |
O1—C4—C5 | 119.4 (4) | ||
C2—N1—N2—C1 | −178.4 (4) | C9—O2—C5—C4 | 178.9 (4) |
N1—N2—C1—N3 | 2.5 (6) | O1—C4—C5—O2 | 0.0 (7) |
N1—N2—C1—S1 | −177.5 (3) | C3—C4—C5—O2 | 179.1 (4) |
N2—N1—C2—C3 | −177.3 (4) | O1—C4—C5—C6 | 179.6 (4) |
N1—C2—C3—C4 | −174.4 (4) | C3—C4—C5—C6 | −1.3 (7) |
N1—C2—C3—C8 | 7.7 (7) | O2—C5—C6—C7 | 179.7 (5) |
C8—C3—C4—O1 | −179.3 (4) | C4—C5—C6—C7 | 0.2 (8) |
C2—C3—C4—O1 | 2.8 (7) | C5—C6—C7—C8 | 0.5 (9) |
C8—C3—C4—C5 | 1.7 (7) | C6—C7—C8—C3 | −0.2 (8) |
C2—C3—C4—C5 | −176.3 (4) | C4—C3—C8—C7 | −0.9 (7) |
C9—O2—C5—C6 | −0.6 (7) | C2—C3—C8—C7 | 177.0 (5) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.82 | 2.14 | 2.610 (4) | 116 |
N3—H3A···N1 | 0.86 | 2.23 | 2.592 (5) | 105 |
O1—H1···S1ii | 0.82 | 2.69 | 3.290 (3) | 131 |
N2—H2···S1iii | 0.86 | 2.62 | 3.470 (4) | 172 |
N3—H3B···O1iv | 0.86 | 2.28 | 2.943 (4) | 134 |
Symmetry codes: (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H11N3O2S |
Mr | 225.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 273 |
a, b, c (Å) | 7.057 (3), 14.673 (5), 10.738 (4) |
β (°) | 108.412 (7) |
V (Å3) | 1055.0 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.15 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.958, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5510, 1872, 1023 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.163, 1.10 |
No. of reflections | 1872 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.28 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
C1···C9i | 3.425 (7) | C2···C4i | 3.445 (7) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.82 | 2.14 | 2.610 (4) | 116.0 |
N3—H3A···N1 | 0.86 | 2.23 | 2.592 (5) | 105.3 |
O1—H1···S1ii | 0.82 | 2.69 | 3.290 (3) | 131.4 |
N2—H2···S1iii | 0.86 | 2.62 | 3.470 (4) | 171.8 |
N3—H3B···O1iv | 0.86 | 2.28 | 2.943 (4) | 134.4 |
Symmetry codes: (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y06–2-12).
References
Fonari, M. S., Simonov, Y. A., Kravtsov, V. C., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129–140. Web of Science CSD CrossRef CAS Google Scholar
Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61–70. Web of Science CSD CrossRef CAS Google Scholar
Kasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomiya, K. (2001). J. Inorg. Biochem. 84, 55–65. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazone Schiff-bases have been investigated in terms of their chemistry and potentially beneficial biological activities, such as antitumor, antibacterial, antiviral and antimalarial activities (Kasuga et al., 2001; Fonari et al., 2003). In continuation of our studies on thiosemicarbazone Schiff-bases, we report the synthesis and crystal structure of the title compound, (I).
In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those found in the literature (Joseph et al., 2006). The intramolecular O—H···O and N—H···N hydrogen bonds (Table 2) contribute to the planarity of molecular skeleton. The intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into zigzag chains along b axis, which are futher paired by π···π interactions proved by short intermolecular C···C distances (Table 1). The crystal packing exhibits also weak intermolecular N—H···S and O—H···S hydrogen bonds (Table 2).