organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(1,3-Benzodioxol-5-yl)eth­yl]-2-chloro­acetamide

aHenan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: donghuichao6503@yahoo.cn

(Received 6 May 2008; accepted 12 May 2008; online 21 May 2008)

The title compound, C11H12ClNO3, crystallizes with two independent mol­ecules in the asymmetric unit. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules related by translation along the b axis into two independent hydrogen-bonded chains. The crystal studied exhibited inversion twinning.

Related literature

For the crystal structures of related compounds, see: Kuehne et al. (1988[Kuehne, M. E., Bornmann, W. G., Parsons, W. H., Spitzer, T. D., Blount, J. F. & Zubieta, J. (1988). J. Org. Chem. 53, 3439-3450.]). For details of the aplication of N-(2-benzo[1,3]dioxol-5-yl-ethyl)-2-chloro-acetamide, see: Bernhard & Snieckus (1971[Bernhard, H. O. & Snieckus, V. (1971). Tetrahedron, 27, 2091-2100.]); Ma et al. (2006[Ma, C., Liu, S., Xin, L., Zhang, Q., Ding, K., Falck, J. R. & Shin, D. (2006). Chem. Lett. 35, 1010-1011.]). For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClNO3

  • Mr = 241.67

  • Orthorhombic, P c a 21

  • a = 14.429 (3) Å

  • b = 5.1258 (10) Å

  • c = 30.679 (6) Å

  • V = 2269.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 (2) K

  • 0.20 × 0.12 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.937, Tmax = 0.971

  • 15836 measured reflections

  • 3949 independent reflections

  • 2946 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.110

  • S = 1.13

  • 3949 reflections

  • 290 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1304 Friedel pairs

  • Flack parameter: 0.47 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.18 2.894 (4) 140
N2—H2B⋯O6ii 0.86 2.18 2.894 (4) 140
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) is an important intermediate for the synthesis of3, 4-dihydroisoquinoline and some other heterocyclic compounds (Bernhard & Snieckus, 1971; Ma et al., 2006). In this paper, we report its crystal structure.

Compound (I) crystallizes with two independent molecules in the non-centrosymmetric unit cell (Fig. 1). All bond lengths and angles in (I) are normal (Allen et al., 1987) and in a good agreement with those reported previously (Kuehne et al., 1988). The intermolecular N—H···O hydrogen bonds (Table 1) link the molecules related by translation along b axis into two independent hydrogen-bonded chains.

Related literature top

For the crystal structures of related compounds, see: Kuehne et al. (1988). For details of the aplication of N-(2-benzo[1,3]dioxol-5-yl-ethyl)-2-chloro-acetamide, see: Bernhard & Snieckus (1971); Ma et al. (2006). For bond-length data, see Allen et al. (1987).

Experimental top

2-Benzo[1,3]dioxol-5-yl-ethylamine (20 mmol) was dissolved in CH2Cl2, and K2CO3 (30 mmol) was added, then chloroacetyl chloride (20 mmol) was added during 30 min at 273 K. After 2 h standing at room temperature, the solution was washed with water, the organic layer was separated, dried with Na2SO4 and evaporated to obtain the primary product. The pure product was isolated by recrystallization from ethyl acetate (1.50 g, 68%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å, N—H=0.86Å and with Uiso(H) = 1.2 times Ueq(C, N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of (I), with atomic labels and 40% probability displacement ellipsoids for non-H atoms.
N-[2-(1,3-Benzodioxol-5-yl)ethyl]-2-chloroacetamide top
Crystal data top
C11H12ClNO3F(000) = 1008
Mr = 241.67Dx = 1.415 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2501 reflections
a = 14.429 (3) Åθ = 2.3–25.1°
b = 5.1258 (10) ŵ = 0.33 mm1
c = 30.679 (6) ÅT = 293 K
V = 2269.1 (8) Å3Needle, colourless
Z = 80.20 × 0.12 × 0.09 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3949 independent reflections
Radiation source: Rotating Anode2946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω oscillation scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.937, Tmax = 0.971k = 56
15836 measured reflectionsl = 3636
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2974P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.34 e Å3
3949 reflectionsΔρmin = 0.35 e Å3
290 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0035 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1304 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.47 (8)
Crystal data top
C11H12ClNO3V = 2269.1 (8) Å3
Mr = 241.67Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 14.429 (3) ŵ = 0.33 mm1
b = 5.1258 (10) ÅT = 293 K
c = 30.679 (6) Å0.20 × 0.12 × 0.09 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3949 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2946 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.971Rint = 0.029
15836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.34 e Å3
S = 1.13Δρmin = 0.35 e Å3
3949 reflectionsAbsolute structure: Flack (1983), 1304 Friedel pairs
290 parametersAbsolute structure parameter: 0.47 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80437 (6)0.77974 (17)0.26938 (4)0.0660 (3)
Cl21.04831 (6)0.72284 (17)0.70767 (4)0.0658 (3)
O10.5138 (3)0.4037 (8)0.51198 (14)0.1064 (13)
O20.4074 (2)0.7028 (7)0.53628 (11)0.0873 (10)
O30.86302 (18)0.1950 (5)0.67866 (11)0.0726 (8)
O40.2640 (2)1.1064 (7)0.46419 (14)0.1001 (12)
O50.1615 (2)0.7930 (7)0.43980 (11)0.0826 (9)
O60.61927 (18)1.3095 (5)0.29844 (12)0.0725 (8)
N10.8579 (2)0.6316 (6)0.67326 (12)0.0569 (8)
H1A0.88720.77490.67800.068*
N20.6139 (2)0.8733 (6)0.30282 (13)0.0567 (9)
H2B0.64280.72940.29800.068*
C10.4217 (4)0.4861 (11)0.5078 (3)0.086 (2)
H1B0.37990.34500.51540.103*
H1C0.40930.53710.47790.103*
C20.6047 (3)0.9174 (9)0.60261 (15)0.0694 (11)
H2A0.62261.04280.62280.083*
C30.5145 (3)0.9204 (10)0.58685 (18)0.0766 (12)
H3A0.47201.04420.59640.092*
C40.4904 (3)0.7377 (8)0.55716 (14)0.0607 (10)
C50.5532 (3)0.5584 (11)0.5434 (2)0.0649 (13)
C60.6420 (3)0.5492 (9)0.5578 (2)0.0681 (14)
H6A0.68360.42580.54730.082*
C70.6685 (2)0.7335 (7)0.58913 (13)0.0558 (9)
C80.7652 (2)0.7271 (8)0.60849 (14)0.0671 (11)
H8A0.80340.60820.59170.080*
H8B0.79250.89960.60640.080*
C90.7648 (3)0.6432 (7)0.65481 (14)0.0605 (10)
H9A0.72770.76420.67170.073*
H9B0.73630.47230.65690.073*
C100.8985 (3)0.4085 (7)0.68301 (15)0.0539 (10)
C110.9951 (2)0.4136 (7)0.70259 (15)0.0613 (10)
H11A1.03480.30410.68480.074*
H11B0.99200.33520.73130.074*
C120.1728 (5)1.0074 (11)0.4679 (3)0.088 (2)
H12A0.16110.95390.49770.105*
H12B0.12851.14260.46030.105*
C130.3619 (3)0.5967 (9)0.37410 (14)0.0662 (11)
H13A0.38130.47350.35380.079*
C140.2717 (3)0.5835 (10)0.38929 (18)0.0748 (12)
H14A0.23070.45620.37950.090*
C150.2458 (3)0.7656 (8)0.41918 (13)0.0605 (10)
C160.3067 (3)0.9502 (10)0.43397 (19)0.0592 (12)
C170.3958 (3)0.9658 (9)0.4176 (2)0.0668 (15)
H17A0.43591.09690.42670.080*
C180.4239 (3)0.7821 (7)0.38744 (12)0.0560 (9)
C190.5200 (3)0.7908 (9)0.36873 (14)0.0670 (11)
H19A0.55640.91740.38480.080*
H19B0.54890.62140.37240.080*
C200.5208 (2)0.8615 (7)0.32136 (14)0.0602 (10)
H20A0.48480.73390.30530.072*
H20B0.49121.02990.31770.072*
C210.6554 (2)1.0929 (7)0.29311 (13)0.0506 (9)
C220.7510 (3)1.0888 (7)0.27470 (15)0.0627 (10)
H22A0.79011.19670.29300.075*
H22B0.74911.16960.24610.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0492 (5)0.0504 (5)0.0983 (7)0.0069 (4)0.0175 (5)0.0016 (6)
Cl20.0504 (5)0.0516 (5)0.0956 (7)0.0081 (4)0.0166 (5)0.0014 (6)
O10.076 (2)0.131 (3)0.112 (3)0.006 (2)0.031 (2)0.054 (3)
O20.0487 (16)0.124 (3)0.089 (2)0.0023 (16)0.0162 (16)0.001 (2)
O30.0640 (17)0.0391 (13)0.115 (2)0.0078 (11)0.0205 (16)0.0023 (16)
O40.075 (2)0.103 (2)0.122 (3)0.007 (2)0.037 (2)0.041 (3)
O50.0531 (16)0.107 (2)0.087 (2)0.0059 (15)0.0207 (16)0.0081 (19)
O60.0626 (17)0.0394 (13)0.115 (2)0.0078 (11)0.0219 (16)0.0040 (16)
N10.0437 (16)0.0416 (16)0.085 (2)0.0045 (13)0.0175 (16)0.0032 (17)
N20.0424 (16)0.0411 (17)0.087 (3)0.0053 (13)0.0127 (16)0.0041 (17)
C10.066 (3)0.122 (5)0.069 (5)0.019 (3)0.030 (4)0.005 (3)
C20.059 (2)0.075 (3)0.074 (3)0.006 (2)0.009 (2)0.012 (3)
C30.059 (3)0.090 (3)0.080 (3)0.026 (2)0.005 (3)0.013 (3)
C40.042 (2)0.081 (3)0.058 (2)0.0002 (19)0.0040 (17)0.007 (2)
C50.055 (3)0.072 (2)0.067 (3)0.007 (2)0.005 (2)0.010 (3)
C60.053 (3)0.078 (3)0.073 (4)0.009 (2)0.004 (2)0.010 (3)
C70.0438 (18)0.068 (2)0.056 (2)0.0028 (17)0.0025 (17)0.004 (2)
C80.042 (2)0.093 (3)0.067 (3)0.0042 (18)0.0033 (17)0.001 (2)
C90.040 (2)0.057 (2)0.085 (3)0.0035 (15)0.0128 (17)0.007 (2)
C100.052 (2)0.039 (2)0.071 (3)0.0008 (17)0.001 (2)0.001 (2)
C110.0459 (19)0.0435 (19)0.094 (3)0.0010 (15)0.016 (2)0.005 (2)
C120.072 (4)0.103 (5)0.087 (6)0.010 (2)0.007 (4)0.003 (3)
C130.061 (3)0.069 (3)0.068 (3)0.005 (2)0.013 (2)0.005 (3)
C140.065 (3)0.086 (3)0.074 (3)0.025 (2)0.012 (2)0.008 (3)
C150.046 (2)0.075 (2)0.061 (3)0.0012 (19)0.0091 (17)0.010 (2)
C160.053 (3)0.067 (2)0.058 (3)0.003 (2)0.009 (2)0.001 (2)
C170.057 (3)0.074 (3)0.070 (4)0.011 (2)0.012 (3)0.012 (2)
C180.049 (2)0.066 (2)0.054 (2)0.0020 (17)0.0007 (18)0.0051 (19)
C190.044 (2)0.088 (3)0.068 (3)0.001 (2)0.0021 (17)0.003 (2)
C200.040 (2)0.060 (2)0.080 (3)0.0049 (16)0.0119 (17)0.006 (2)
C210.0473 (19)0.038 (2)0.067 (2)0.0004 (15)0.0091 (19)0.002 (2)
C220.054 (2)0.0424 (19)0.092 (3)0.0005 (16)0.015 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C221.769 (4)C7—C81.517 (5)
Cl2—C111.768 (4)C8—C91.485 (6)
O1—C51.372 (7)C8—H8A0.9700
O1—C11.401 (7)C8—H8B0.9700
O2—C41.370 (5)C9—H9A0.9700
O2—C11.428 (7)C9—H9B0.9700
O3—C101.216 (4)C10—C111.518 (5)
O4—C161.371 (6)C11—H11A0.9700
O4—C121.416 (7)C11—H11B0.9700
O5—C151.378 (5)C12—H12A0.9700
O5—C121.405 (7)C12—H12B0.9700
O6—C211.237 (4)C13—C181.367 (6)
N1—C101.319 (5)C13—C141.384 (6)
N1—C91.458 (4)C13—H13A0.9300
N1—H1A0.8600C14—C151.361 (6)
N2—C211.309 (5)C14—H14A0.9300
N2—C201.459 (4)C15—C161.368 (6)
N2—H2B0.8600C16—C171.383 (6)
C1—H1B0.9700C17—C181.381 (6)
C1—H1C0.9700C17—H17A0.9300
C2—C71.381 (6)C18—C191.501 (5)
C2—C31.388 (6)C19—C201.498 (6)
C2—H2A0.9300C19—H19A0.9700
C3—C41.352 (7)C19—H19B0.9700
C3—H3A0.9300C20—H20A0.9700
C4—C51.358 (7)C20—H20B0.9700
C5—C61.355 (6)C21—C221.491 (5)
C6—C71.401 (7)C22—H22A0.9700
C6—H6A0.9300C22—H22B0.9700
C5—O1—C1106.5 (4)C10—C11—H11A108.1
C4—O2—C1105.1 (4)Cl2—C11—H11A108.1
C16—O4—C12105.2 (4)C10—C11—H11B108.1
C15—O5—C12105.0 (4)Cl2—C11—H11B108.1
C10—N1—C9122.2 (3)H11A—C11—H11B107.3
C10—N1—H1A118.9O5—C12—O4109.8 (6)
C9—N1—H1A118.9O5—C12—H12A109.7
C21—N2—C20123.0 (3)O4—C12—H12A109.7
C21—N2—H2B118.5O5—C12—H12B109.7
C20—N2—H2B118.5O4—C12—H12B109.7
O1—C1—O2108.4 (5)H12A—C12—H12B108.2
O1—C1—H1B110.0C18—C13—C14123.2 (4)
O2—C1—H1B110.0C18—C13—H13A118.4
O1—C1—H1C110.0C14—C13—H13A118.4
O2—C1—H1C110.0C15—C14—C13116.8 (4)
H1B—C1—H1C108.4C15—C14—H14A121.6
C7—C2—C3121.8 (4)C13—C14—H14A121.6
C7—C2—H2A119.1C14—C15—C16121.4 (4)
C3—C2—H2A119.1C14—C15—O5128.4 (4)
C4—C3—C2117.9 (4)C16—C15—O5110.1 (4)
C4—C3—H3A121.0C15—C16—O4109.9 (4)
C2—C3—H3A121.0C15—C16—C17121.1 (5)
C3—C4—C5120.4 (4)O4—C16—C17129.0 (5)
C3—C4—O2129.1 (4)C18—C17—C16118.5 (4)
C5—C4—O2110.5 (4)C18—C17—H17A120.8
C6—C5—C4123.6 (5)C16—C17—H17A120.8
C6—C5—O1126.9 (5)C13—C18—C17118.9 (4)
C4—C5—O1109.4 (4)C13—C18—C19120.7 (4)
C5—C6—C7117.2 (5)C17—C18—C19120.4 (4)
C5—C6—H6A121.4C20—C19—C18112.7 (3)
C7—C6—H6A121.4C20—C19—H19A109.0
C2—C7—C6119.0 (4)C18—C19—H19A109.0
C2—C7—C8120.7 (4)C20—C19—H19B109.0
C6—C7—C8120.3 (4)C18—C19—H19B109.0
C9—C8—C7112.2 (3)H19A—C19—H19B107.8
C9—C8—H8A109.2N2—C20—C19113.3 (3)
C7—C8—H8A109.2N2—C20—H20A108.9
C9—C8—H8B109.2C19—C20—H20A108.9
C7—C8—H8B109.2N2—C20—H20B108.9
H8A—C8—H8B107.9C19—C20—H20B108.9
N1—C9—C8112.4 (3)H20A—C20—H20B107.7
N1—C9—H9A109.1O6—C21—N2123.3 (3)
C8—C9—H9A109.1O6—C21—C22116.9 (3)
N1—C9—H9B109.1N2—C21—C22119.8 (3)
C8—C9—H9B109.1C21—C22—Cl1116.8 (3)
H9A—C9—H9B107.9C21—C22—H22A108.1
O3—C10—N1124.7 (4)Cl1—C22—H22A108.1
O3—C10—C11116.4 (3)C21—C22—H22B108.1
N1—C10—C11118.9 (3)Cl1—C22—H22B108.1
C10—C11—Cl2116.7 (3)H22A—C22—H22B107.3
C5—O1—C1—O22.5 (7)C15—O5—C12—O40.5 (7)
C4—O2—C1—O11.5 (6)C16—O4—C12—O50.0 (7)
C7—C2—C3—C40.7 (8)C18—C13—C14—C150.5 (7)
C2—C3—C4—C50.2 (8)C13—C14—C15—C161.0 (7)
C2—C3—C4—O2178.6 (4)C13—C14—C15—O5178.8 (4)
C1—O2—C4—C3178.5 (6)C12—O5—C15—C14178.8 (6)
C1—O2—C4—C50.1 (5)C12—O5—C15—C160.8 (5)
C3—C4—C5—C60.2 (9)C14—C15—C16—O4179.0 (5)
O2—C4—C5—C6178.5 (5)O5—C15—C16—O40.9 (6)
C3—C4—C5—O1177.1 (5)C14—C15—C16—C172.9 (8)
O2—C4—C5—O11.6 (6)O5—C15—C16—C17178.9 (5)
C1—O1—C5—C6179.3 (6)C12—O4—C16—C150.5 (7)
C1—O1—C5—C42.5 (7)C12—O4—C16—C17178.4 (6)
C4—C5—C6—C71.3 (9)C15—C16—C17—C183.2 (9)
O1—C5—C6—C7177.6 (6)O4—C16—C17—C18179.1 (5)
C3—C2—C7—C61.7 (7)C14—C13—C18—C170.1 (7)
C3—C2—C7—C8177.1 (5)C14—C13—C18—C19178.2 (4)
C5—C6—C7—C22.0 (8)C16—C17—C18—C131.7 (8)
C5—C6—C7—C8176.9 (5)C16—C17—C18—C19180.0 (5)
C2—C7—C8—C969.1 (5)C13—C18—C19—C2066.7 (5)
C6—C7—C8—C9109.7 (5)C17—C18—C19—C20111.5 (5)
C10—N1—C9—C8109.7 (5)C21—N2—C20—C19106.4 (5)
C7—C8—C9—N1178.8 (3)C18—C19—C20—N2179.4 (3)
C9—N1—C10—O31.6 (6)C20—N2—C21—O60.6 (6)
C9—N1—C10—C11179.3 (4)C20—N2—C21—C22179.3 (4)
O3—C10—C11—Cl2178.4 (3)O6—C21—C22—Cl1177.3 (3)
N1—C10—C11—Cl23.7 (6)N2—C21—C22—Cl12.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.182.894 (4)140
N2—H2B···O6ii0.862.182.894 (4)140
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H12ClNO3
Mr241.67
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)14.429 (3), 5.1258 (10), 30.679 (6)
V3)2269.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.12 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.937, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
15836, 3949, 2946
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.110, 1.13
No. of reflections3949
No. of parameters290
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.35
Absolute structureFlack (1983), 1304 Friedel pairs
Absolute structure parameter0.47 (8)

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.182.894 (4)140.0
N2—H2B···O6ii0.862.182.894 (4)140.4
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernhard, H. O. & Snieckus, V. (1971). Tetrahedron, 27, 2091–2100.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKuehne, M. E., Bornmann, W. G., Parsons, W. H., Spitzer, T. D., Blount, J. F. & Zubieta, J. (1988). J. Org. Chem. 53, 3439–3450.  CSD CrossRef CAS Web of Science Google Scholar
First citationMa, C., Liu, S., Xin, L., Zhang, Q., Ding, K., Falck, J. R. & Shin, D. (2006). Chem. Lett. 35, 1010–1011.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds