organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Hy­droxy­benzyl­­idene­amino)benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 26 March 2008; accepted 23 April 2008; online 10 May 2008)

The mol­ecule of the title compound, C14H10N2O, displays a trans configuration with respect to the C=N double bond. The mol­ecule is roughly planar; the two aromatic rings make a dihedral angle of 9.3 (3)°. Such a planar conformation is induced by the strong intra­molecular O—H⋯N hydrogen bond between the imine and hydroxyl groups.

Related literature

For the structures of similar Schiff base compounds, see: Cheng et al. (2005[Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137-o1138.], 2006[Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417-o2418.]). For related literature, see: Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); Elmah et al. (1999[Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229-234.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]); Xu et al. (2008[Xu, H.-J., Gong, X.-X. & Wang, H. (2008). Acta Cryst. E64, o638.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.24

  • Monoclinic, P 21

  • a = 4.7667 (10) Å

  • b = 16.190 (3) Å

  • c = 7.6714 (15) Å

  • β = 93.30 (3)°

  • V = 591.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 1.00 (expected range = 0.977–0.996)

  • 5470 measured reflections

  • 1201 independent reflections

  • 633 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.136

  • S = 1.03

  • 1201 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.651 (6) 147

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The Schiff base compounds have received considerable attention for several decades, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber, et al., 2007), catalysis (Chen, et al., 2008) and biological process (May, et al.,2004). Recently, we have reported a Schiff base compound (Xu, et al., 2008). As an extention of our work on the structural characterization of Schiff base compounds, the title compound, (I), has been synthesized and its crystal structure is reported here.

As expected, the molecule displays a trans configuration about the central C7=N1 bond. The dihedral angle between the planes of the two aromatic rings is 9.34(0.29)°, showing that the conjugated part of the molecule is not entirely coplanar. A strong O – H ··· N intramolecular hydrogen-bond interaction is observed in the molecular structure (Fig. 1, Table 1) similar to the pervious reports (Xu et al., 2008; Cheng et al.,2006, 2005).

All the bond lengths and bond angles in the compound are within normal ranges (Allen, et al., 1987). The C7=N1 bond length of 1.292 (5) Å indicates a high degree of double-bond character comparable with the corresponding bond lengths in other Schiff bases (1.280 (2) Å; Elmah et al., 1999).

Related literature top

For the structure of similar Schiff base compounds, see: Cheng et al. (2005, 2006). For related literature, see: Chen et al. (2008); Elmah et al. (1999); May et al. (2004); Weber et al. (2007); Xu et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

All chemicals were obtained from commercial sources and used without further purification except for salicylaldehyde which is distiled under reduced pressure before use. 3-aminobenzonitrile (1.18 g, 10 mmol) and salicylaldehyde (1.22 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 4 h, then cooled to room temperature overnight and large amounts of a yellow precipitate were formed. Yellow crystal was obtained by recrystallization from ethyl alcohol(yield: 85%). 1H-NMR(CDCl3, 300 MHz): δ6.98 (t, 1 H), 7.08 (d, 1 H), 7.37(t, 2 H), 7.45 (t, 2 H), 7.69 (m, 2H), 8.72 (s, 1 H). Esi-MS: calcd for C14H9N2O – H m/z 221.24, found 221.34. For the X-ray diffraction analysis, suitable single crystals of compound (I) were obtained after one week by slow evaporation from an ethyl alcohol solution.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.82Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as smal spheres of arbitrary radii. Intramolecular H bond is shown as dashed line.
2-(2-Hydroxybenzylideneamino)benzonitrile top
Crystal data top
C14H10N2OF(000) = 232
Mr = 222.24Dx = 1.249 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4123 reflections
a = 4.7667 (10) Åθ = 3.7–28.7°
b = 16.190 (3) ŵ = 0.08 mm1
c = 7.6714 (15) ÅT = 293 K
β = 93.30 (3)°Block, colorless
V = 591.0 (2) Å30.20 × 0.05 × 0.05 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
1201 independent reflections
Radiation source: fine-focus sealed tube633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.981, Tmax = 1.00l = 99
5470 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
1201 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C14H10N2OV = 591.0 (2) Å3
Mr = 222.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.7667 (10) ŵ = 0.08 mm1
b = 16.190 (3) ÅT = 293 K
c = 7.6714 (15) Å0.20 × 0.05 × 0.05 mm
β = 93.30 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1201 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
633 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 1.00Rint = 0.105
5470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
1201 reflectionsΔρmin = 0.18 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0060 (10)0.5064 (3)0.8304 (7)0.0474 (15)
C20.0982 (11)0.5462 (4)0.6745 (9)0.0580 (16)
C30.2999 (13)0.6076 (4)0.6777 (10)0.076 (2)
H30.35940.63430.57470.091*
C40.4118 (14)0.6293 (4)0.8306 (12)0.0747 (19)
H40.54530.67120.83030.090*
C50.3320 (12)0.5906 (4)0.9860 (10)0.073 (2)
H50.41500.60471.08870.087*
C60.1256 (11)0.5303 (4)0.9858 (8)0.0639 (16)
H60.06520.50521.09040.077*
C70.2044 (10)0.4416 (3)0.8361 (7)0.0480 (14)
H70.25920.41790.94310.058*
C80.5180 (10)0.3518 (3)0.7054 (6)0.0431 (14)
C90.6040 (10)0.3216 (3)0.5473 (7)0.0526 (15)
C100.7977 (11)0.2575 (4)0.5400 (8)0.0657 (17)
H100.84840.23750.43260.079*
C110.9127 (13)0.2241 (4)0.6912 (9)0.0685 (18)
H111.04170.18120.68770.082*
C120.8365 (11)0.2546 (4)0.8477 (9)0.0623 (17)
H120.91820.23240.95030.075*
C130.6393 (11)0.3180 (3)0.8582 (7)0.0565 (15)
H130.58990.33730.96640.068*
C140.4758 (15)0.3547 (5)0.3888 (9)0.093 (2)
N10.3182 (9)0.4157 (2)0.6972 (5)0.0459 (11)
N20.3736 (15)0.3796 (5)0.2608 (8)0.147 (3)
O10.0028 (9)0.5256 (3)0.5203 (5)0.0815 (14)
H10.11740.48810.53480.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (3)0.047 (4)0.055 (4)0.003 (3)0.005 (3)0.002 (3)
C20.052 (3)0.044 (4)0.079 (5)0.005 (3)0.013 (3)0.011 (3)
C30.067 (5)0.068 (5)0.094 (6)0.010 (4)0.014 (4)0.020 (4)
C40.063 (4)0.043 (4)0.119 (6)0.012 (4)0.013 (4)0.001 (4)
C50.051 (4)0.079 (5)0.089 (5)0.002 (3)0.014 (4)0.029 (4)
C60.054 (4)0.075 (5)0.062 (4)0.004 (4)0.002 (3)0.020 (3)
C70.043 (3)0.053 (4)0.047 (4)0.002 (3)0.003 (2)0.005 (3)
C80.046 (3)0.042 (4)0.042 (3)0.002 (3)0.004 (2)0.006 (2)
C90.050 (3)0.060 (4)0.048 (4)0.004 (3)0.001 (3)0.003 (3)
C100.065 (4)0.068 (5)0.065 (4)0.009 (3)0.005 (3)0.017 (3)
C110.060 (4)0.072 (5)0.073 (5)0.007 (4)0.004 (3)0.005 (4)
C120.056 (4)0.052 (4)0.080 (5)0.010 (3)0.006 (3)0.017 (3)
C130.059 (4)0.061 (4)0.050 (4)0.006 (3)0.010 (3)0.007 (3)
C140.093 (5)0.135 (7)0.052 (4)0.042 (5)0.005 (4)0.012 (4)
N10.049 (3)0.041 (3)0.048 (3)0.003 (2)0.0079 (19)0.000 (2)
N20.162 (7)0.225 (9)0.053 (4)0.106 (6)0.002 (4)0.010 (5)
O10.085 (3)0.092 (4)0.069 (3)0.028 (2)0.020 (2)0.030 (2)
Geometric parameters (Å, º) top
C1—C61.405 (7)C8—C131.389 (7)
C1—C21.406 (7)C8—C91.391 (6)
C1—C71.450 (6)C8—N11.406 (6)
C2—O11.345 (7)C9—C101.393 (7)
C2—C31.385 (8)C9—C141.433 (9)
C3—C41.363 (9)C10—C111.365 (8)
C3—H30.9300C10—H100.9300
C4—C51.381 (9)C11—C121.366 (8)
C4—H40.9300C11—H110.9300
C5—C61.387 (8)C12—C131.397 (7)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.293 (5)C14—N21.144 (7)
C7—H70.9300O1—H10.8200
C6—C1—C2118.3 (5)C13—C8—C9117.9 (5)
C6—C1—C7119.1 (5)C13—C8—N1125.2 (5)
C2—C1—C7122.6 (5)C9—C8—N1116.9 (4)
O1—C2—C3118.5 (6)C8—C9—C10121.8 (5)
O1—C2—C1121.7 (5)C8—C9—C14118.4 (5)
C3—C2—C1119.8 (6)C10—C9—C14119.7 (5)
C4—C3—C2120.5 (6)C11—C10—C9119.7 (6)
C4—C3—H3119.8C11—C10—H10120.2
C2—C3—H3119.8C9—C10—H10120.2
C3—C4—C5121.6 (6)C10—C11—C12119.3 (6)
C3—C4—H4119.2C10—C11—H11120.3
C5—C4—H4119.2C12—C11—H11120.3
C4—C5—C6118.6 (6)C11—C12—C13122.0 (6)
C4—C5—H5120.7C11—C12—H12119.0
C6—C5—H5120.7C13—C12—H12119.0
C5—C6—C1121.2 (6)C8—C13—C12119.3 (5)
C5—C6—H6119.4C8—C13—H13120.3
C1—C6—H6119.4C12—C13—H13120.3
N1—C7—C1122.1 (4)N2—C14—C9178.6 (8)
N1—C7—H7118.9C7—N1—C8121.1 (4)
C1—C7—H7118.9C2—O1—H1109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.651 (6)147

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.24
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)4.7667 (10), 16.190 (3), 7.6714 (15)
β (°) 93.30 (3)
V3)591.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.981, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
5470, 1201, 633
Rint0.105
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.136, 1.03
No. of reflections1201
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.651 (6)147.3
 

Acknowledgements

HJX acknowledges a Start-up Grant from Southeast University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, H.-J., Gong, X.-X. & Wang, H. (2008). Acta Cryst. E64, o638.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds