organic compounds
2-(2-Hydroxybenzylideneamino)benzonitrile
aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn
The molecule of the title compound, C14H10N2O, displays a trans configuration with respect to the C=N double bond. The molecule is roughly planar; the two aromatic rings make a dihedral angle of 9.3 (3)°. Such a planar conformation is induced by the strong intramolecular O—H⋯N hydrogen bond between the imine and hydroxyl groups.
Related literature
For the structures of similar Schiff base compounds, see: Cheng et al. (2005, 2006). For related literature, see: Chen et al. (2008); Elmah et al. (1999); May et al. (2004); Weber et al. (2007); Xu et al. (2008). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680801163X/dn2331sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801163X/dn2331Isup2.hkl
All chemicals were obtained from commercial sources and used without further purification except for salicylaldehyde which is distiled under reduced pressure before use. 3-aminobenzonitrile (1.18 g, 10 mmol) and salicylaldehyde (1.22 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 4 h, then cooled to room temperature overnight and large amounts of a yellow precipitate were formed. Yellow crystal was obtained by recrystallization from ethyl alcohol(yield: 85%). 1H-NMR(CDCl3, 300 MHz): δ6.98 (t, 1 H), 7.08 (d, 1 H), 7.37(t, 2 H), 7.45 (t, 2 H), 7.69 (m, 2H), 8.72 (s, 1 H). Esi-MS: calcd for C14H9N2O – H m/z 221.24, found 221.34. For the X-ray suitable single crystals of compound (I) were obtained after one week by slow evaporation from an ethyl alcohol solution.
All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.82Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).
In the absence of significant
the could not be reliably determined and then the Friedel pairs were merged and any references to the were removed.Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H10N2O | F(000) = 232 |
Mr = 222.24 | Dx = 1.249 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 4123 reflections |
a = 4.7667 (10) Å | θ = 3.7–28.7° |
b = 16.190 (3) Å | µ = 0.08 mm−1 |
c = 7.6714 (15) Å | T = 293 K |
β = 93.30 (3)° | Block, colorless |
V = 591.0 (2) Å3 | 0.20 × 0.05 × 0.05 mm |
Z = 2 |
Rigaku Mercury2 diffractometer | 1201 independent reflections |
Radiation source: fine-focus sealed tube | 633 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.105 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 26.0°, θmin = 3.7° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −19→19 |
Tmin = 0.981, Tmax = 1.00 | l = −9→9 |
5470 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3 |
1201 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.15 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
C14H10N2O | V = 591.0 (2) Å3 |
Mr = 222.24 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 4.7667 (10) Å | µ = 0.08 mm−1 |
b = 16.190 (3) Å | T = 293 K |
c = 7.6714 (15) Å | 0.20 × 0.05 × 0.05 mm |
β = 93.30 (3)° |
Rigaku Mercury2 diffractometer | 1201 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 633 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 1.00 | Rint = 0.105 |
5470 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 1 restraint |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.15 e Å−3 |
1201 reflections | Δρmin = −0.18 e Å−3 |
155 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0060 (10) | 0.5064 (3) | 0.8304 (7) | 0.0474 (15) | |
C2 | −0.0982 (11) | 0.5462 (4) | 0.6745 (9) | 0.0580 (16) | |
C3 | −0.2999 (13) | 0.6076 (4) | 0.6777 (10) | 0.076 (2) | |
H3 | −0.3594 | 0.6343 | 0.5747 | 0.091* | |
C4 | −0.4118 (14) | 0.6293 (4) | 0.8306 (12) | 0.0747 (19) | |
H4 | −0.5453 | 0.6712 | 0.8303 | 0.090* | |
C5 | −0.3320 (12) | 0.5906 (4) | 0.9860 (10) | 0.073 (2) | |
H5 | −0.4150 | 0.6047 | 1.0887 | 0.087* | |
C6 | −0.1256 (11) | 0.5303 (4) | 0.9858 (8) | 0.0639 (16) | |
H6 | −0.0652 | 0.5052 | 1.0904 | 0.077* | |
C7 | 0.2044 (10) | 0.4416 (3) | 0.8361 (7) | 0.0480 (14) | |
H7 | 0.2592 | 0.4179 | 0.9431 | 0.058* | |
C8 | 0.5180 (10) | 0.3518 (3) | 0.7054 (6) | 0.0431 (14) | |
C9 | 0.6040 (10) | 0.3216 (3) | 0.5473 (7) | 0.0526 (15) | |
C10 | 0.7977 (11) | 0.2575 (4) | 0.5400 (8) | 0.0657 (17) | |
H10 | 0.8484 | 0.2375 | 0.4326 | 0.079* | |
C11 | 0.9127 (13) | 0.2241 (4) | 0.6912 (9) | 0.0685 (18) | |
H11 | 1.0417 | 0.1812 | 0.6877 | 0.082* | |
C12 | 0.8365 (11) | 0.2546 (4) | 0.8477 (9) | 0.0623 (17) | |
H12 | 0.9182 | 0.2324 | 0.9503 | 0.075* | |
C13 | 0.6393 (11) | 0.3180 (3) | 0.8582 (7) | 0.0565 (15) | |
H13 | 0.5899 | 0.3373 | 0.9664 | 0.068* | |
C14 | 0.4758 (15) | 0.3547 (5) | 0.3888 (9) | 0.093 (2) | |
N1 | 0.3182 (9) | 0.4157 (2) | 0.6972 (5) | 0.0459 (11) | |
N2 | 0.3736 (15) | 0.3796 (5) | 0.2608 (8) | 0.147 (3) | |
O1 | 0.0028 (9) | 0.5256 (3) | 0.5203 (5) | 0.0815 (14) | |
H1 | 0.1174 | 0.4881 | 0.5348 | 0.122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.040 (3) | 0.047 (4) | 0.055 (4) | −0.003 (3) | 0.005 (3) | −0.002 (3) |
C2 | 0.052 (3) | 0.044 (4) | 0.079 (5) | 0.005 (3) | 0.013 (3) | 0.011 (3) |
C3 | 0.067 (5) | 0.068 (5) | 0.094 (6) | 0.010 (4) | 0.014 (4) | 0.020 (4) |
C4 | 0.063 (4) | 0.043 (4) | 0.119 (6) | 0.012 (4) | 0.013 (4) | −0.001 (4) |
C5 | 0.051 (4) | 0.079 (5) | 0.089 (5) | 0.002 (3) | 0.014 (4) | −0.029 (4) |
C6 | 0.054 (4) | 0.075 (5) | 0.062 (4) | −0.004 (4) | −0.002 (3) | −0.020 (3) |
C7 | 0.043 (3) | 0.053 (4) | 0.047 (4) | 0.002 (3) | −0.003 (2) | −0.005 (3) |
C8 | 0.046 (3) | 0.042 (4) | 0.042 (3) | −0.002 (3) | 0.004 (2) | −0.006 (2) |
C9 | 0.050 (3) | 0.060 (4) | 0.048 (4) | 0.004 (3) | 0.001 (3) | 0.003 (3) |
C10 | 0.065 (4) | 0.068 (5) | 0.065 (4) | 0.009 (3) | 0.005 (3) | −0.017 (3) |
C11 | 0.060 (4) | 0.072 (5) | 0.073 (5) | 0.007 (4) | 0.004 (3) | −0.005 (4) |
C12 | 0.056 (4) | 0.052 (4) | 0.080 (5) | 0.010 (3) | 0.006 (3) | 0.017 (3) |
C13 | 0.059 (4) | 0.061 (4) | 0.050 (4) | 0.006 (3) | 0.010 (3) | 0.007 (3) |
C14 | 0.093 (5) | 0.135 (7) | 0.052 (4) | 0.042 (5) | 0.005 (4) | −0.012 (4) |
N1 | 0.049 (3) | 0.041 (3) | 0.048 (3) | −0.003 (2) | 0.0079 (19) | 0.000 (2) |
N2 | 0.162 (7) | 0.225 (9) | 0.053 (4) | 0.106 (6) | −0.002 (4) | 0.010 (5) |
O1 | 0.085 (3) | 0.092 (4) | 0.069 (3) | 0.028 (2) | 0.020 (2) | 0.030 (2) |
C1—C6 | 1.405 (7) | C8—C13 | 1.389 (7) |
C1—C2 | 1.406 (7) | C8—C9 | 1.391 (6) |
C1—C7 | 1.450 (6) | C8—N1 | 1.406 (6) |
C2—O1 | 1.345 (7) | C9—C10 | 1.393 (7) |
C2—C3 | 1.385 (8) | C9—C14 | 1.433 (9) |
C3—C4 | 1.363 (9) | C10—C11 | 1.365 (8) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.381 (9) | C11—C12 | 1.366 (8) |
C4—H4 | 0.9300 | C11—H11 | 0.9300 |
C5—C6 | 1.387 (8) | C12—C13 | 1.397 (7) |
C5—H5 | 0.9300 | C12—H12 | 0.9300 |
C6—H6 | 0.9300 | C13—H13 | 0.9300 |
C7—N1 | 1.293 (5) | C14—N2 | 1.144 (7) |
C7—H7 | 0.9300 | O1—H1 | 0.8200 |
C6—C1—C2 | 118.3 (5) | C13—C8—C9 | 117.9 (5) |
C6—C1—C7 | 119.1 (5) | C13—C8—N1 | 125.2 (5) |
C2—C1—C7 | 122.6 (5) | C9—C8—N1 | 116.9 (4) |
O1—C2—C3 | 118.5 (6) | C8—C9—C10 | 121.8 (5) |
O1—C2—C1 | 121.7 (5) | C8—C9—C14 | 118.4 (5) |
C3—C2—C1 | 119.8 (6) | C10—C9—C14 | 119.7 (5) |
C4—C3—C2 | 120.5 (6) | C11—C10—C9 | 119.7 (6) |
C4—C3—H3 | 119.8 | C11—C10—H10 | 120.2 |
C2—C3—H3 | 119.8 | C9—C10—H10 | 120.2 |
C3—C4—C5 | 121.6 (6) | C10—C11—C12 | 119.3 (6) |
C3—C4—H4 | 119.2 | C10—C11—H11 | 120.3 |
C5—C4—H4 | 119.2 | C12—C11—H11 | 120.3 |
C4—C5—C6 | 118.6 (6) | C11—C12—C13 | 122.0 (6) |
C4—C5—H5 | 120.7 | C11—C12—H12 | 119.0 |
C6—C5—H5 | 120.7 | C13—C12—H12 | 119.0 |
C5—C6—C1 | 121.2 (6) | C8—C13—C12 | 119.3 (5) |
C5—C6—H6 | 119.4 | C8—C13—H13 | 120.3 |
C1—C6—H6 | 119.4 | C12—C13—H13 | 120.3 |
N1—C7—C1 | 122.1 (4) | N2—C14—C9 | 178.6 (8) |
N1—C7—H7 | 118.9 | C7—N1—C8 | 121.1 (4) |
C1—C7—H7 | 118.9 | C2—O1—H1 | 109.5 |
Experimental details
Crystal data | |
Chemical formula | C14H10N2O |
Mr | 222.24 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 4.7667 (10), 16.190 (3), 7.6714 (15) |
β (°) | 93.30 (3) |
V (Å3) | 591.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.20 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.981, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5470, 1201, 633 |
Rint | 0.105 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.136, 1.03 |
No. of reflections | 1201 |
No. of parameters | 155 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.18 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).
Acknowledgements
HJX acknowledges a Start-up Grant from Southeast University.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Google Scholar
Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138. Web of Science CrossRef IUCr Journals Google Scholar
Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162. Web of Science CSD CrossRef CAS Google Scholar
Xu, H.-J., Gong, X.-X. & Wang, H. (2008). Acta Cryst. E64, o638. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The Schiff base compounds have received considerable attention for several decades, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber, et al., 2007), catalysis (Chen, et al., 2008) and biological process (May, et al.,2004). Recently, we have reported a Schiff base compound (Xu, et al., 2008). As an extention of our work on the structural characterization of Schiff base compounds, the title compound, (I), has been synthesized and its crystal structure is reported here.
As expected, the molecule displays a trans configuration about the central C7=N1 bond. The dihedral angle between the planes of the two aromatic rings is 9.34(0.29)°, showing that the conjugated part of the molecule is not entirely coplanar. A strong O – H ··· N intramolecular hydrogen-bond interaction is observed in the molecular structure (Fig. 1, Table 1) similar to the pervious reports (Xu et al., 2008; Cheng et al.,2006, 2005).
All the bond lengths and bond angles in the compound are within normal ranges (Allen, et al., 1987). The C7=N1 bond length of 1.292 (5) Å indicates a high degree of double-bond character comparable with the corresponding bond lengths in other Schiff bases (1.280 (2) Å; Elmah et al., 1999).