organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-3,3-di­methyl-7-nitro-3,4-di­hydro­isoquinolin-1(2H)-one

aLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia, bLaboratoire de Sciences de Matériaux et d'Environnement, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia, and cICSN–CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: mohamed.damak@fss.rnu.tn

(Received 27 March 2008; accepted 6 May 2008; online 10 May 2008)

In the title compound, C11H12N2O4, a new hydroxamic acid which belonging to the isoquinole family, the heterocyclic ring adopts a half-chair conformation. The nitro group is essentially coplanar with the aromatic ring. Inter­molecular O—H⋯O hydrogen bonds assemble the mol­ecules around inversion centres to form pseudo-dimers.

Related literature

For related literature, see: Bohé & Kammoun (2004[Bohé, L. & Kammoun, M. (2004). Tetrahedron Lett. 45, 747-751.]); Kurzak et al. (1992[Kurzak, B., Kozlowski, H. & Farkas, E. (1992). Coord. Chem. Rev. 114, 169-171.]); Porcheddu & Giacomelli (2006[Porcheddu, A. & Giacomelli, G. (2006). J. Org. Chem. 71, 7057-7059.]); Weber (1983[Weber, G. (1983). Cancer Res. 43, 3466-3470.]); Miller (1989[Miller, M. (1989). J. Chem. Rev. 89, 1563-1662.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O4

  • Mr = 236.23

  • Monoclinic, P 21 /n

  • a = 5.8805 (9) Å

  • b = 18.605 (4) Å

  • c = 10.1588 (17) Å

  • β = 103.056 (12)°

  • V = 1082.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.60 × 0.51 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.938, Tmax = 0.975

  • 7659 measured reflections

  • 3286 independent reflections

  • 2051 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.150

  • S = 1.11

  • 3286 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O11i 0.82 1.99 2.7013 (14) 144
O12—H12⋯O11 0.82 2.20 2.6305 (15) 113
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydroxamic acids are strong metal ion chelators (Kurzak et al., 1992), they posses a wide spectrum of biological activities, such as antibacterial, antifungal, anti-inflammatory, and anti-asthmatic properties, etc. (Weber, 1983; Miller 1989).

The growing number of published synthetic methods further points to the biological significance of hydroxamic acids (Porcheddu & Giacomelli, 2006). Among this family of hydroxamic acids is the title compound (1). We report herein its synthesis and its crystal structure determination. Synthesis of the title compound has been prepared from the corresponding dihydroisoquinoleine (2) by metachloroperbenzoic acid oxidation (Fig. 1). Imine (2) was described by Bohé and Kammoun (2004), in three steps from the commercially available tertiary alcohol (3).

In the title compound, the heterocyclic ring adopts a half-chair conformation as indicated by the puckering parameters: Q = 0.4224 (14)Å, θ = 57.87 (18)°, ϕ = 281.2 (2)° (Cremer & Pople, 1975). The nitro group attached on C7 is essentially coplanar with the aromatic nucleus (Fig. 2). The methyl substituent in position 3 of the heterocyclic ring is pseudo-axial, the second methyl in position 3 is pseudo-equatorial.

The conformation of (1) is stabilized by an intramolecular hydrogen bond between the hydroxyl O12—H12 group and atom O11 (Table 1).The molecules are assembled by intermolecualr O-H···O hydrogen bonds to form pseudo dimer arranged around inversion centre (Table 1, Fig. 3)

Related literature top

For related literature, see: Bohé & Kammoun (2004); Kurzak et al. (1992); Porcheddu & Giacomelli (2006); Weber (1983); Miller (1989); Cremer & Pople (1975).

Experimental top

The title compound was prepared by reaction of imine (2) (100 mg, 0.49 mmol), and methachloroperbenzoique acid 86% (197 mg, 0.98 mmol) in dichloromethane (15 ml). The mixture was stirred at room temperature for 24 h. Then, the mixture was diluted with CH2Cl2 and washed with a solution of saturated NaHCO3. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The concentrate was chromatographed on silica gel, with (ether) as eluent (yield 40%). m.p.418 K. Spectroscopic analysis, 1H NMR (300 MHz; DMSO-d6, p.p.m): 1.26 (s, 6H, 2Me 3); 3.23 (s, 2H); 7.59 (d, J = 8.4, 1H, aromatic H); 8.33 (dd, J = 8.4, J= 2.4, 1H, aromatic H); 8.56 (d, J = 2.4, 1H aromatic H); 9.8 (s wide, 1H, OH). 13 C NMR (75 MHz; DMSO-d6, p.p.m): 25.24; 41.80; 60.66; 122.02; 126.87; 129.91;130.41; 144.05; 147.21; 160.08. M.S (EI, 70 ev): m/z: 236 (M+.); 221 [(M–15)+., base peak]. MS (HR): Found: 236,0844 calcd mass for C11H12N2O4: 236,0875. Recrystallizations from dichloromethane afford yellow crystals suitable for diffraction.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.97 Å (methylene), 0.93Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O, Caromatic).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Chemical pathway of the formation of hydroxamic acid.
[Figure 2] Fig. 2. Molecular view of the title compound with the atom-labelling scheme. Ellispsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Partial packing view showing the formation of pseudo dimer through O-H···O hydrogen bonds. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) 1-x, 1-y, 1-z]
2-Hydroxy-3,3-dimethyl-7-nitro-3,4-dihydroisoquinolin-1(2H)-one top
Crystal data top
C11H12N2O4F(000) = 496
Mr = 236.23Dx = 1.449 Mg m3
Monoclinic, P21/nMelting point: 418 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.8805 (9) ÅCell parameters from 2421 reflections
b = 18.605 (4) Åθ = 2.5–23.2°
c = 10.1588 (17) ŵ = 0.11 mm1
β = 103.056 (12)°T = 296 K
V = 1082.7 (3) Å3Prism, colourless
Z = 40.60 × 0.51 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3286 independent reflections
Radiation source: sealed tube2051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.4°, θmin = 2.2°
Absorption correction: multi-scan
(Coppens et al., 1965)
h = 88
Tmin = 0.938, Tmax = 0.975k = 026
7659 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0949P]
where P = (Fo2 + 2Fc2)/3
3286 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H12N2O4V = 1082.7 (3) Å3
Mr = 236.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8805 (9) ŵ = 0.11 mm1
b = 18.605 (4) ÅT = 296 K
c = 10.1588 (17) Å0.60 × 0.51 × 0.22 mm
β = 103.056 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3286 independent reflections
Absorption correction: multi-scan
(Coppens et al., 1965)
2051 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.975Rint = 0.021
7659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.11Δρmax = 0.26 e Å3
3286 reflectionsΔρmin = 0.27 e Å3
157 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7652 (2)0.53911 (7)0.36105 (13)0.0323 (3)
C30.7990 (2)0.67410 (7)0.36068 (15)0.0380 (3)
C40.8660 (3)0.66689 (8)0.22427 (15)0.0426 (3)
H4A0.72560.66920.15270.051*
H4B0.96450.70720.21270.051*
C51.1554 (3)0.59404 (8)0.13045 (14)0.0393 (3)
H51.19030.63470.08570.047*
C61.2662 (3)0.52948 (8)0.11699 (14)0.0410 (3)
H61.37790.52680.06530.049*
C71.2075 (2)0.46956 (7)0.18163 (13)0.0339 (3)
C81.0435 (2)0.47108 (7)0.25982 (13)0.0330 (3)
H81.00520.42970.30150.040*
C90.9371 (2)0.53674 (7)0.27418 (12)0.0296 (2)
C100.9923 (2)0.59838 (7)0.21048 (13)0.0338 (3)
C131.0066 (3)0.68808 (8)0.47591 (16)0.0471 (3)
H13A0.95660.68900.55960.071*
H13B1.07520.73350.46250.071*
H13C1.12000.65060.47890.071*
C140.6172 (3)0.73411 (8)0.35087 (19)0.0538 (4)
H14A0.48230.72260.28130.081*
H14B0.68290.77870.32940.081*
H14C0.57270.73860.43580.081*
N20.6880 (2)0.60494 (6)0.38233 (13)0.0402 (3)
N151.3238 (2)0.40117 (7)0.16643 (13)0.0438 (3)
O110.69294 (19)0.48475 (5)0.40857 (11)0.0437 (3)
O120.5448 (2)0.61049 (6)0.47313 (13)0.0542 (3)
H120.51290.57020.49610.081*
O161.4723 (3)0.40057 (7)0.09958 (16)0.0701 (4)
O171.2691 (3)0.34788 (6)0.22078 (16)0.0724 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0312 (5)0.0344 (6)0.0338 (6)0.0011 (5)0.0129 (4)0.0013 (5)
C30.0393 (7)0.0316 (6)0.0463 (8)0.0024 (5)0.0163 (5)0.0012 (5)
C40.0514 (8)0.0382 (7)0.0403 (7)0.0039 (6)0.0146 (6)0.0078 (5)
C50.0468 (8)0.0409 (7)0.0340 (7)0.0071 (5)0.0172 (5)0.0027 (5)
C60.0422 (7)0.0506 (8)0.0357 (7)0.0047 (6)0.0203 (5)0.0025 (6)
C70.0331 (6)0.0385 (7)0.0323 (6)0.0022 (5)0.0118 (4)0.0066 (5)
C80.0341 (6)0.0356 (6)0.0316 (6)0.0023 (4)0.0125 (4)0.0028 (5)
C90.0251 (5)0.0356 (6)0.0300 (5)0.0015 (4)0.0102 (4)0.0009 (4)
C100.0369 (6)0.0378 (7)0.0283 (6)0.0015 (5)0.0104 (4)0.0001 (5)
C130.0491 (8)0.0449 (8)0.0478 (8)0.0067 (6)0.0120 (6)0.0062 (6)
C140.0549 (10)0.0395 (8)0.0710 (11)0.0094 (7)0.0224 (8)0.0025 (7)
N20.0398 (6)0.0384 (6)0.0484 (7)0.0012 (5)0.0225 (5)0.0004 (5)
N150.0435 (7)0.0449 (7)0.0484 (7)0.0015 (5)0.0216 (5)0.0107 (5)
O110.0474 (6)0.0392 (5)0.0530 (6)0.0016 (4)0.0290 (5)0.0036 (4)
O120.0577 (7)0.0439 (6)0.0759 (8)0.0026 (5)0.0466 (6)0.0024 (5)
O160.0803 (10)0.0621 (8)0.0872 (10)0.0148 (7)0.0593 (9)0.0031 (7)
O170.0887 (11)0.0377 (6)0.1104 (12)0.0020 (6)0.0633 (10)0.0055 (7)
Geometric parameters (Å, º) top
C1—O111.2366 (15)C7—C81.3816 (17)
C1—N21.3407 (16)C7—N151.4690 (18)
C1—C91.4851 (16)C8—C91.3950 (17)
C3—N21.4818 (18)C8—H80.9300
C3—C131.511 (2)C9—C101.3905 (17)
C3—C41.530 (2)C13—H13A0.9600
C3—C141.533 (2)C13—H13B0.9600
C4—C101.497 (2)C13—H13C0.9600
C4—H4A0.9700C14—H14A0.9600
C4—H4B0.9700C14—H14B0.9600
C5—C61.388 (2)C14—H14C0.9600
C5—C101.3927 (18)N2—O121.3862 (14)
C5—H50.9300N15—O171.2130 (17)
C6—C71.3768 (19)N15—O161.2215 (16)
C6—H60.9300O12—H120.8200
O11—C1—N2121.69 (11)C9—C8—H8121.1
O11—C1—C9123.22 (11)C10—C9—C8121.09 (11)
N2—C1—C9115.07 (11)C10—C9—C1120.91 (11)
N2—C3—C13109.91 (12)C8—C9—C1118.00 (11)
N2—C3—C4105.70 (11)C9—C10—C5119.18 (12)
C13—C3—C4112.86 (12)C9—C10—C4119.07 (12)
N2—C3—C14108.53 (12)C5—C10—C4121.68 (12)
C13—C3—C14110.76 (13)C3—C13—H13A109.5
C4—C3—C14108.88 (12)C3—C13—H13B109.5
C10—C4—C3113.20 (11)H13A—C13—H13B109.5
C10—C4—H4A108.9C3—C13—H13C109.5
C3—C4—H4A108.9H13A—C13—H13C109.5
C10—C4—H4B108.9H13B—C13—H13C109.5
C3—C4—H4B108.9C3—C14—H14A109.5
H4A—C4—H4B107.8C3—C14—H14B109.5
C6—C5—C10120.56 (12)H14A—C14—H14B109.5
C6—C5—H5119.7C3—C14—H14C109.5
C10—C5—H5119.7H14A—C14—H14C109.5
C7—C6—C5118.67 (12)H14B—C14—H14C109.5
C7—C6—H6120.7C1—N2—O12117.02 (11)
C5—C6—H6120.7C1—N2—C3126.35 (11)
C6—C7—C8122.71 (12)O12—N2—C3112.85 (10)
C6—C7—N15118.59 (11)O17—N15—O16122.81 (13)
C8—C7—N15118.70 (12)O17—N15—C7118.86 (12)
C7—C8—C9117.77 (11)O16—N15—C7118.34 (12)
C7—C8—H8121.1N2—O12—H12109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O11i0.821.992.7013 (14)144
O12—H12···O110.822.202.6305 (15)113
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12N2O4
Mr236.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.8805 (9), 18.605 (4), 10.1588 (17)
β (°) 103.056 (12)
V3)1082.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.51 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Coppens et al., 1965)
Tmin, Tmax0.938, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7659, 3286, 2051
Rint0.021
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.151, 1.11
No. of reflections3286
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O11i0.821.992.7013 (14)144.1
O12—H12···O110.822.202.6305 (15)112.5
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationBohé, L. & Kammoun, M. (2004). Tetrahedron Lett. 45, 747–751.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKurzak, B., Kozlowski, H. & Farkas, E. (1992). Coord. Chem. Rev. 114, 169–171.  CrossRef CAS Web of Science Google Scholar
First citationMiller, M. (1989). J. Chem. Rev. 89, 1563–1662.  CrossRef CAS Web of Science Google Scholar
First citationPorcheddu, A. & Giacomelli, G. (2006). J. Org. Chem. 71, 7057–7059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, G. (1983). Cancer Res. 43, 3466–3470.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds