metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bromidocopper(I)]-μ-η2,σ1-3-(2-allyl-2H-tetra­zol-5-yl)pyridine]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seu_ww@yahoo.com.cn

(Received 4 April 2008; accepted 15 April 2008; online 3 May 2008)

The title compound, [CuBr(C9H9N5)]n, has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetra­zol-5-yl)pyridine. It is a new homometallic CuI olefin coord­ination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra­zol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-dimensional structure is formed through weak Cu—Br [3.1579 (8) Å], C—H⋯Br and C—H⋯N inter­actions.

Related literature

For the solvothermal synthesis and related structures, see: Ye et al. (2005[Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208-225.], 2007[Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C9H9N5)]

  • Mr = 330.66

  • Triclinic, [P \overline 1]

  • a = 7.4464 (15) Å

  • b = 7.7982 (16) Å

  • c = 9.940 (2) Å

  • α = 80.15 (3)°

  • β = 76.02 (3)°

  • γ = 85.13 (3)°

  • V = 551.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.58 mm−1

  • T = 293 (2) K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 1 (expected range = 0.412–0.572)

  • 5748 measured reflections

  • 2522 independent reflections

  • 2173 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.072

  • S = 1.11

  • 2522 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.93 2.90 3.776 (3) 157
C2—H2⋯N5i 0.93 2.62 3.415 (4) 144
C9—H9A⋯N3ii 0.97 2.88 3.800 (4) 159
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and CAMERON (Pearce et al., 2000[Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Under hydrothermal or solvothermal conditions, some interesting reactions can be carried out leading to new compounds, while It is worth noting that these products could not be synthesized using conventional solution techniques. In sealed tube, unstable copper (I) salt can exist under vacuums, and then interesting copper (I) coordination compound can be obtained (Ye et al., 2005, 2007). The title compound is obtained through solvothermal treatment of CuBr and 3-(2-allyl-2H-tetrazol -5-yl) pyridine in methanol solvent at 75°C, colorless block crystals suitable for X-ray diffractions have been isolated. have been isolated.

The copper(I) is coordinated to two olefinic ligands and one terminal Br atom in a trigonal environment (Fig 1). The olefin ligands link the neighbouring Cu centers to form an homometallic CuI coordination polymer developping along the c axis. The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands coordinate to copper (I) centers through N atom of pyridine ring and double bond of allyl group. Unfortunately, the N atoms of tetrazole ring fail to coordinate to Cu(I).

Finally, weak Cu—Br, C-H···Br and C—H···N (Table 1) interactions result in the formation of a three-dimensionnal structure (Fig. 2)

Related literature top

For the solvothermal synthesis and related structures, see: Ye et al. (2005, 2007).

Experimental top

A mixture of 3-(2-allyl-2H-tetrazol-5-yl) pyridine(20 mg, 0.2 mmol), CuBr (17.9 mg,0.2 mmol), and methanol (2 mL) sealed in a glass tube were maintained at 75 °C. Crystals suitable for X-ray analysis were obtained after 5 days

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x,y + 1, z - 1; (ii) x, y - 1, z + 1].
[Figure 2] Fig. 2. Partial packing view of the title compound showing the formationof the three dimensionnal network. Weak interactions are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
catena-Poly[[bromidocopper(I)]-µ-η2,σ1-3-(2-allyl-2H- tetrazol-5-yl)pyridine] top
Crystal data top
[CuBr(C9H9N5)]Z = 2
Mr = 330.66F(000) = 324
Triclinic, P1Dx = 1.992 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4464 (15) ÅCell parameters from 5524 reflections
b = 7.7982 (16) Åθ = 3.1–28.8°
c = 9.940 (2) ŵ = 5.58 mm1
α = 80.15 (3)°T = 293 K
β = 76.02 (3)°Block, colorless
γ = 85.13 (3)°0.2 × 0.15 × 0.1 mm
V = 551.3 (2) Å3
Data collection top
Rigaku Mercury2
diffractometer
2522 independent reflections
Radiation source: fine-focus sealed tube2173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.720, Tmax = 1l = 1212
5748 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2889P]
where P = (Fo2 + 2Fc2)/3
2522 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[CuBr(C9H9N5)]γ = 85.13 (3)°
Mr = 330.66V = 551.3 (2) Å3
Triclinic, P1Z = 2
a = 7.4464 (15) ÅMo Kα radiation
b = 7.7982 (16) ŵ = 5.58 mm1
c = 9.940 (2) ÅT = 293 K
α = 80.15 (3)°0.2 × 0.15 × 0.1 mm
β = 76.02 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2522 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2173 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 1Rint = 0.032
5748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.11Δρmax = 0.41 e Å3
2522 reflectionsΔρmin = 0.44 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16126 (4)0.38319 (4)0.41251 (3)0.03175 (10)
Cu10.16354 (5)0.33917 (5)0.39002 (4)0.03347 (12)
N10.2917 (3)0.5093 (3)0.2281 (2)0.0267 (5)
N20.0895 (4)0.9916 (3)0.2237 (2)0.0269 (5)
N30.2398 (4)0.9414 (3)0.1753 (2)0.0282 (5)
N40.0584 (4)0.9032 (4)0.1582 (3)0.0357 (6)
N50.0058 (4)0.7876 (4)0.0601 (3)0.0344 (6)
C10.4652 (4)0.5523 (4)0.2192 (3)0.0346 (7)
H10.52640.49710.28720.042*
C20.5561 (5)0.6741 (5)0.1144 (4)0.0380 (8)
H20.67770.69850.10990.046*
C30.4632 (4)0.7608 (4)0.0144 (3)0.0325 (7)
H30.52130.84500.05730.039*
C40.2039 (4)0.5909 (4)0.1310 (3)0.0251 (6)
H40.08440.56030.13550.030*
C50.2839 (4)0.7195 (4)0.0238 (3)0.0244 (6)
C60.1752 (4)0.8133 (4)0.0724 (3)0.0256 (6)
C80.0820 (5)1.1435 (4)0.3331 (3)0.0311 (7)
H8A0.12521.24370.30630.037*
H8B0.04571.16940.33950.037*
C70.1968 (4)0.1148 (4)0.5261 (3)0.0275 (6)
H70.17770.00600.49560.033*
C90.3637 (4)0.1859 (4)0.4666 (4)0.0377 (8)
H9A0.45020.12210.40100.045*
H9B0.42170.23480.52800.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02503 (17)0.03096 (17)0.03858 (18)0.00123 (12)0.01088 (13)0.00150 (13)
Cu10.0248 (2)0.0368 (2)0.0298 (2)0.00004 (16)0.00487 (16)0.01707 (17)
N10.0230 (13)0.0300 (13)0.0224 (12)0.0013 (10)0.0036 (10)0.0059 (10)
N20.0302 (13)0.0260 (12)0.0209 (11)0.0013 (10)0.0060 (10)0.0063 (10)
N30.0328 (14)0.0269 (13)0.0206 (11)0.0037 (10)0.0046 (10)0.0065 (10)
N40.0316 (15)0.0371 (15)0.0316 (14)0.0044 (12)0.0035 (12)0.0096 (12)
N50.0296 (14)0.0376 (15)0.0295 (13)0.0074 (11)0.0056 (11)0.0140 (12)
C10.0295 (17)0.0415 (18)0.0306 (16)0.0001 (14)0.0104 (13)0.0048 (14)
C20.0269 (17)0.0453 (19)0.0396 (18)0.0110 (14)0.0080 (14)0.0048 (15)
C30.0337 (17)0.0300 (16)0.0296 (15)0.0072 (13)0.0048 (13)0.0065 (13)
C40.0240 (15)0.0265 (14)0.0209 (13)0.0017 (12)0.0028 (11)0.0040 (11)
C50.0273 (15)0.0246 (14)0.0187 (13)0.0004 (12)0.0033 (11)0.0006 (11)
C60.0307 (16)0.0242 (14)0.0185 (13)0.0028 (12)0.0020 (12)0.0014 (11)
C80.0387 (18)0.0250 (15)0.0246 (14)0.0021 (13)0.0069 (13)0.0075 (12)
C70.0307 (16)0.0217 (14)0.0258 (14)0.0031 (12)0.0078 (12)0.0075 (12)
C90.0286 (17)0.0375 (18)0.0389 (18)0.0074 (14)0.0084 (14)0.0130 (15)
Geometric parameters (Å, º) top
Br1—Cu12.3752 (7)C2—H20.9300
Cu1—N12.001 (2)C3—C51.377 (4)
Cu1—C92.040 (3)C3—H30.9300
Cu1—C72.057 (3)C4—C51.387 (4)
N1—C41.337 (3)C4—H40.9300
N1—C11.341 (4)C5—C61.463 (4)
N2—N41.320 (3)C8—C7i1.495 (4)
N2—N31.326 (3)C8—H8A0.9700
N2—C81.472 (3)C8—H8B0.9700
N3—C61.330 (4)C7—C91.361 (4)
N4—N51.320 (4)C7—C8ii1.495 (4)
N5—C61.353 (4)C7—H70.9800
C1—C21.370 (4)C9—H9A0.9700
C1—H10.9300C9—H9B0.9700
C2—C31.395 (4)
N1—Cu1—C9107.38 (12)C5—C4—H4118.7
N1—Cu1—C7145.02 (11)C3—C5—C4118.6 (3)
C9—Cu1—C738.80 (12)C3—C5—C6121.4 (3)
N1—Cu1—Br1108.50 (7)C4—C5—C6119.9 (3)
C9—Cu1—Br1144.01 (9)N3—C6—N5112.7 (3)
C7—Cu1—Br1105.36 (9)N3—C6—C5123.6 (3)
C4—N1—C1118.2 (3)N5—C6—C5123.5 (3)
C4—N1—Cu1121.3 (2)N2—C8—C7i112.7 (2)
C1—N1—Cu1120.37 (19)N2—C8—H8A109.1
N4—N2—N3114.7 (2)C7i—C8—H8A109.1
N4—N2—C8122.0 (3)N2—C8—H8B109.1
N3—N2—C8123.1 (2)C7i—C8—H8B109.1
N2—N3—C6101.0 (2)H8A—C8—H8B107.8
N2—N4—N5105.8 (2)C9—C7—C8ii123.7 (3)
N4—N5—C6105.9 (2)C9—C7—Cu169.93 (17)
N1—C1—C2122.8 (3)C8ii—C7—Cu1106.21 (19)
N1—C1—H1118.6C9—C7—H7115.6
C2—C1—H1118.6C8ii—C7—H7115.6
C1—C2—C3118.9 (3)Cu1—C7—H7115.6
C1—C2—H2120.6C7—C9—Cu171.26 (18)
C3—C2—H2120.6C7—C9—H9A116.5
C5—C3—C2118.8 (3)Cu1—C9—H9A116.5
C5—C3—H3120.6C7—C9—H9B116.5
C2—C3—H3120.6Cu1—C9—H9B116.5
N1—C4—C5122.7 (3)H9A—C9—H9B113.5
N1—C4—H4118.7
Symmetry codes: (i) x, y+1, z1; (ii) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1iii0.932.903.776 (3)157
C2—H2···N5iii0.932.623.415 (4)144
C9—H9A···N3iv0.972.883.800 (4)159
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[CuBr(C9H9N5)]
Mr330.66
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4464 (15), 7.7982 (16), 9.940 (2)
α, β, γ (°)80.15 (3), 76.02 (3), 85.13 (3)
V3)551.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.58
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.720, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
5748, 2522, 2173
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.11
No. of reflections2522
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and CAMERON (Pearce et al., 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.932.903.776 (3)157.1
C2—H2···N5i0.932.623.415 (4)144.4
C9—H9A···N3ii0.972.883.800 (4)158.8
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

References

First citationPearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225.  Web of Science PubMed CAS Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds