metal-organic compounds
catena-Poly[[bromidocopper(I)]-μ-η2,σ1-3-(2-allyl-2H-tetrazol-5-yl)pyridine]
aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seu_ww@yahoo.com.cn
The title compound, [CuBr(C9H9N5)]n, has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetrazol-5-yl)pyridine. It is a new homometallic CuI olefin coordination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetrazol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-dimensional structure is formed through weak Cu—Br [3.1579 (8) Å], C—H⋯Br and C—H⋯N interactions.
Related literature
For the solvothermal synthesis and related structures, see: Ye et al. (2005, 2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808010313/dn2335sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808010313/dn2335Isup2.hkl
A mixture of 3-(2-allyl-2H-tetrazol-5-yl) pyridine(20 mg, 0.2 mmol), CuBr (17.9 mg,0.2 mmol), and methanol (2 mL) sealed in a glass tube were maintained at 75 °C. Crystals suitable for X-ray analysis were obtained after 5 days
All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[CuBr(C9H9N5)] | Z = 2 |
Mr = 330.66 | F(000) = 324 |
Triclinic, P1 | Dx = 1.992 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4464 (15) Å | Cell parameters from 5524 reflections |
b = 7.7982 (16) Å | θ = 3.1–28.8° |
c = 9.940 (2) Å | µ = 5.58 mm−1 |
α = 80.15 (3)° | T = 293 K |
β = 76.02 (3)° | Block, colorless |
γ = 85.13 (3)° | 0.2 × 0.15 × 0.1 mm |
V = 551.3 (2) Å3 |
Rigaku Mercury2 diffractometer | 2522 independent reflections |
Radiation source: fine-focus sealed tube | 2173 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
CCD_Profile_fitting scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −10→10 |
Tmin = 0.720, Tmax = 1 | l = −12→12 |
5748 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2889P] where P = (Fo2 + 2Fc2)/3 |
2522 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
[CuBr(C9H9N5)] | γ = 85.13 (3)° |
Mr = 330.66 | V = 551.3 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4464 (15) Å | Mo Kα radiation |
b = 7.7982 (16) Å | µ = 5.58 mm−1 |
c = 9.940 (2) Å | T = 293 K |
α = 80.15 (3)° | 0.2 × 0.15 × 0.1 mm |
β = 76.02 (3)° |
Rigaku Mercury2 diffractometer | 2522 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2173 reflections with I > 2σ(I) |
Tmin = 0.720, Tmax = 1 | Rint = 0.032 |
5748 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.41 e Å−3 |
2522 reflections | Δρmin = −0.44 e Å−3 |
145 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.16126 (4) | 0.38319 (4) | 0.41251 (3) | 0.03175 (10) | |
Cu1 | 0.16354 (5) | 0.33917 (5) | 0.39002 (4) | 0.03347 (12) | |
N1 | 0.2917 (3) | 0.5093 (3) | 0.2281 (2) | 0.0267 (5) | |
N2 | 0.0895 (4) | 0.9916 (3) | −0.2237 (2) | 0.0269 (5) | |
N3 | 0.2398 (4) | 0.9414 (3) | −0.1753 (2) | 0.0282 (5) | |
N4 | −0.0584 (4) | 0.9032 (4) | −0.1582 (3) | 0.0357 (6) | |
N5 | −0.0058 (4) | 0.7876 (4) | −0.0601 (3) | 0.0344 (6) | |
C1 | 0.4652 (4) | 0.5523 (4) | 0.2192 (3) | 0.0346 (7) | |
H1 | 0.5264 | 0.4971 | 0.2872 | 0.042* | |
C2 | 0.5561 (5) | 0.6741 (5) | 0.1144 (4) | 0.0380 (8) | |
H2 | 0.6777 | 0.6985 | 0.1099 | 0.046* | |
C3 | 0.4632 (4) | 0.7608 (4) | 0.0144 (3) | 0.0325 (7) | |
H3 | 0.5213 | 0.8450 | −0.0573 | 0.039* | |
C4 | 0.2039 (4) | 0.5909 (4) | 0.1310 (3) | 0.0251 (6) | |
H4 | 0.0844 | 0.5603 | 0.1355 | 0.030* | |
C5 | 0.2839 (4) | 0.7195 (4) | 0.0238 (3) | 0.0244 (6) | |
C6 | 0.1752 (4) | 0.8133 (4) | −0.0724 (3) | 0.0256 (6) | |
C8 | 0.0820 (5) | 1.1435 (4) | −0.3331 (3) | 0.0311 (7) | |
H8A | 0.1252 | 1.2437 | −0.3063 | 0.037* | |
H8B | −0.0457 | 1.1694 | −0.3395 | 0.037* | |
C7 | 0.1968 (4) | 0.1148 (4) | 0.5261 (3) | 0.0275 (6) | |
H7 | 0.1777 | 0.0060 | 0.4956 | 0.033* | |
C9 | 0.3637 (4) | 0.1859 (4) | 0.4666 (4) | 0.0377 (8) | |
H9A | 0.4502 | 0.1221 | 0.4010 | 0.045* | |
H9B | 0.4217 | 0.2348 | 0.5280 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02503 (17) | 0.03096 (17) | 0.03858 (18) | −0.00123 (12) | −0.01088 (13) | 0.00150 (13) |
Cu1 | 0.0248 (2) | 0.0368 (2) | 0.0298 (2) | 0.00004 (16) | −0.00487 (16) | 0.01707 (17) |
N1 | 0.0230 (13) | 0.0300 (13) | 0.0224 (12) | 0.0013 (10) | −0.0036 (10) | 0.0059 (10) |
N2 | 0.0302 (13) | 0.0260 (12) | 0.0209 (11) | −0.0013 (10) | −0.0060 (10) | 0.0063 (10) |
N3 | 0.0328 (14) | 0.0269 (13) | 0.0206 (11) | −0.0037 (10) | −0.0046 (10) | 0.0065 (10) |
N4 | 0.0316 (15) | 0.0371 (15) | 0.0316 (14) | −0.0044 (12) | −0.0035 (12) | 0.0096 (12) |
N5 | 0.0296 (14) | 0.0376 (15) | 0.0295 (13) | −0.0074 (11) | −0.0056 (11) | 0.0140 (12) |
C1 | 0.0295 (17) | 0.0415 (18) | 0.0306 (16) | −0.0001 (14) | −0.0104 (13) | 0.0048 (14) |
C2 | 0.0269 (17) | 0.0453 (19) | 0.0396 (18) | −0.0110 (14) | −0.0080 (14) | 0.0048 (15) |
C3 | 0.0337 (17) | 0.0300 (16) | 0.0296 (15) | −0.0072 (13) | −0.0048 (13) | 0.0065 (13) |
C4 | 0.0240 (15) | 0.0265 (14) | 0.0209 (13) | −0.0017 (12) | −0.0028 (11) | 0.0040 (11) |
C5 | 0.0273 (15) | 0.0246 (14) | 0.0187 (13) | −0.0004 (12) | −0.0033 (11) | 0.0006 (11) |
C6 | 0.0307 (16) | 0.0242 (14) | 0.0185 (13) | −0.0028 (12) | −0.0020 (12) | 0.0014 (11) |
C8 | 0.0387 (18) | 0.0250 (15) | 0.0246 (14) | 0.0021 (13) | −0.0069 (13) | 0.0075 (12) |
C7 | 0.0307 (16) | 0.0217 (14) | 0.0258 (14) | 0.0031 (12) | −0.0078 (12) | 0.0075 (12) |
C9 | 0.0286 (17) | 0.0375 (18) | 0.0389 (18) | 0.0074 (14) | −0.0084 (14) | 0.0130 (15) |
Br1—Cu1 | 2.3752 (7) | C2—H2 | 0.9300 |
Cu1—N1 | 2.001 (2) | C3—C5 | 1.377 (4) |
Cu1—C9 | 2.040 (3) | C3—H3 | 0.9300 |
Cu1—C7 | 2.057 (3) | C4—C5 | 1.387 (4) |
N1—C4 | 1.337 (3) | C4—H4 | 0.9300 |
N1—C1 | 1.341 (4) | C5—C6 | 1.463 (4) |
N2—N4 | 1.320 (3) | C8—C7i | 1.495 (4) |
N2—N3 | 1.326 (3) | C8—H8A | 0.9700 |
N2—C8 | 1.472 (3) | C8—H8B | 0.9700 |
N3—C6 | 1.330 (4) | C7—C9 | 1.361 (4) |
N4—N5 | 1.320 (4) | C7—C8ii | 1.495 (4) |
N5—C6 | 1.353 (4) | C7—H7 | 0.9800 |
C1—C2 | 1.370 (4) | C9—H9A | 0.9700 |
C1—H1 | 0.9300 | C9—H9B | 0.9700 |
C2—C3 | 1.395 (4) | ||
N1—Cu1—C9 | 107.38 (12) | C5—C4—H4 | 118.7 |
N1—Cu1—C7 | 145.02 (11) | C3—C5—C4 | 118.6 (3) |
C9—Cu1—C7 | 38.80 (12) | C3—C5—C6 | 121.4 (3) |
N1—Cu1—Br1 | 108.50 (7) | C4—C5—C6 | 119.9 (3) |
C9—Cu1—Br1 | 144.01 (9) | N3—C6—N5 | 112.7 (3) |
C7—Cu1—Br1 | 105.36 (9) | N3—C6—C5 | 123.6 (3) |
C4—N1—C1 | 118.2 (3) | N5—C6—C5 | 123.5 (3) |
C4—N1—Cu1 | 121.3 (2) | N2—C8—C7i | 112.7 (2) |
C1—N1—Cu1 | 120.37 (19) | N2—C8—H8A | 109.1 |
N4—N2—N3 | 114.7 (2) | C7i—C8—H8A | 109.1 |
N4—N2—C8 | 122.0 (3) | N2—C8—H8B | 109.1 |
N3—N2—C8 | 123.1 (2) | C7i—C8—H8B | 109.1 |
N2—N3—C6 | 101.0 (2) | H8A—C8—H8B | 107.8 |
N2—N4—N5 | 105.8 (2) | C9—C7—C8ii | 123.7 (3) |
N4—N5—C6 | 105.9 (2) | C9—C7—Cu1 | 69.93 (17) |
N1—C1—C2 | 122.8 (3) | C8ii—C7—Cu1 | 106.21 (19) |
N1—C1—H1 | 118.6 | C9—C7—H7 | 115.6 |
C2—C1—H1 | 118.6 | C8ii—C7—H7 | 115.6 |
C1—C2—C3 | 118.9 (3) | Cu1—C7—H7 | 115.6 |
C1—C2—H2 | 120.6 | C7—C9—Cu1 | 71.26 (18) |
C3—C2—H2 | 120.6 | C7—C9—H9A | 116.5 |
C5—C3—C2 | 118.8 (3) | Cu1—C9—H9A | 116.5 |
C5—C3—H3 | 120.6 | C7—C9—H9B | 116.5 |
C2—C3—H3 | 120.6 | Cu1—C9—H9B | 116.5 |
N1—C4—C5 | 122.7 (3) | H9A—C9—H9B | 113.5 |
N1—C4—H4 | 118.7 |
Symmetry codes: (i) x, y+1, z−1; (ii) x, y−1, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Br1iii | 0.93 | 2.90 | 3.776 (3) | 157 |
C2—H2···N5iii | 0.93 | 2.62 | 3.415 (4) | 144 |
C9—H9A···N3iv | 0.97 | 2.88 | 3.800 (4) | 159 |
Symmetry codes: (iii) x+1, y, z; (iv) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [CuBr(C9H9N5)] |
Mr | 330.66 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.4464 (15), 7.7982 (16), 9.940 (2) |
α, β, γ (°) | 80.15 (3), 76.02 (3), 85.13 (3) |
V (Å3) | 551.3 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.58 |
Crystal size (mm) | 0.2 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.720, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5748, 2522, 2173 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.072, 1.11 |
No. of reflections | 2522 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.44 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and CAMERON (Pearce et al., 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Br1i | 0.93 | 2.90 | 3.776 (3) | 157.1 |
C2—H2···N5i | 0.93 | 2.62 | 3.415 (4) | 144.4 |
C9—H9A···N3ii | 0.97 | 2.88 | 3.800 (4) | 158.8 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z. |
Acknowledgements
This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.
References
Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225. Web of Science PubMed CAS Google Scholar
Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Under hydrothermal or solvothermal conditions, some interesting reactions can be carried out leading to new compounds, while It is worth noting that these products could not be synthesized using conventional solution techniques. In sealed tube, unstable copper (I) salt can exist under vacuums, and then interesting copper (I) coordination compound can be obtained (Ye et al., 2005, 2007). The title compound is obtained through solvothermal treatment of CuBr and 3-(2-allyl-2H-tetrazol -5-yl) pyridine in methanol solvent at 75°C, colorless block crystals suitable for X-ray diffractions have been isolated. have been isolated.
The copper(I) is coordinated to two olefinic ligands and one terminal Br atom in a trigonal environment (Fig 1). The olefin ligands link the neighbouring Cu centers to form an homometallic CuI coordination polymer developping along the c axis. The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands coordinate to copper (I) centers through N atom of pyridine ring and double bond of allyl group. Unfortunately, the N atoms of tetrazole ring fail to coordinate to Cu(I).
Finally, weak Cu—Br, C-H···Br and C—H···N (Table 1) interactions result in the formation of a three-dimensionnal structure (Fig. 2)