organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-Ammonio-3-(4-nitro­phen­yl)propanoate monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 17 April 2008; accepted 20 April 2008; online 3 May 2008)

The title compound, C9H10N2O4·H2O, exists as a zwitterion with a deprotonated carboxyl group and a protonated amino group. The crystal packing is stabilized by N—H⋯O and O—H⋯O hydrogen bonds, building sheets parallel to the (001) plane. The absolute configuration was deduced from the synthetic pathway.

Related literature

For details of α-amino acids as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007[Lucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703-707.]); Arki et al. (2004[Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43-S54.]); Hauck et al. (2006[Hauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305-2309.]); Azim et al. (2006[Azim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523-1529.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O4·H2O

  • Mr = 228.21

  • Orthorhombic, P 21 21 21

  • a = 5.3141 (8) Å

  • b = 6.2823 (7) Å

  • c = 30.752 (4) Å

  • V = 1026.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.970, Tmax = 0.974

  • 10728 measured reflections

  • 1466 independent reflections

  • 1261 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.09

  • 1466 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1W 0.89 1.88 2.760 (3) 168
N2—H2A⋯O1Wi 0.89 2.43 3.029 (3) 125
N2—H2A⋯O4ii 0.89 2.29 2.913 (3) 127
N2—H2C⋯O3iii 0.89 1.92 2.797 (3) 166
O1W—H1WB⋯O3iv 0.85 2.23 2.764 (3) 121
O1W—H1WC⋯O4v 0.85 2.00 2.740 (3) 146
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x-1, y-1, z; (v) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α-Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of α-amino acids as precursors for the synthesis of novel biologically active compounds (Lucchese et al., (2007); Arki et al., (2004); Hauck et al., (2006); Azim et al., (2006)).Here we report the synthesis and crystal structure of the title compound.

The title compound exists as a zwitter ion with a deprotonated carboxyl group and a protonated amino group (Fig. 1). It crystallizes with one water molecule in the asymmetric unit. The crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds building sheets parallel to the (0 0 1) plane (Table 1, Figs. 2).

The S absolute configuration at C8 is deduced from the synthetic pathway.

Related literature top

For details of α-amino acids as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007); Arki et al. (2004); Hauck et al. (2006); Azim et al. (2006).

Experimental top

Under nitrogen protection, 2-amino-3-phenylpropanoic acid (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 h. The resulting solution was poured into ice water (100 mL), then filtered and washed with distilled water. The crude product was recrystallized with distilled water to yield colorless block-like crystals, suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene), 0.93 Å (aromatic) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on their parent O atom.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined by the X-ray analyses and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005; data reduction: CrystalClear (Rigaku, 2005; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis and all hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.
(S)-2-Ammonio-3-(4-nitrophenyl)propanoate monohydrate top
Crystal data top
C9H10N2O4·H2OF(000) = 480
Mr = 228.21Dx = 1.476 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1470 reflections
a = 5.3141 (8) Åθ = 3.0–27.5°
b = 6.2823 (7) ŵ = 0.12 mm1
c = 30.752 (4) ÅT = 293 K
V = 1026.7 (2) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1466 independent reflections
Radiation source: fine-focus sealed tube1261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 13.6612 pixels mm-1θmax = 27.8°, θmin = 3.3°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.970, Tmax = 0.974l = 4040
10728 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.0774P]
where P = (Fo2 + 2Fc2)/3
1466 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H10N2O4·H2OV = 1026.7 (2) Å3
Mr = 228.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3141 (8) ŵ = 0.12 mm1
b = 6.2823 (7) ÅT = 293 K
c = 30.752 (4) Å0.25 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1466 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1261 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.974Rint = 0.046
10728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.09Δρmax = 0.25 e Å3
1466 reflectionsΔρmin = 0.22 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.8183 (3)0.4808 (3)0.17549 (6)0.0391 (4)
N20.2254 (4)0.2416 (3)0.20604 (6)0.0346 (5)
H2A0.25350.27490.23370.052*
H2B0.16370.11010.20440.052*
H2C0.11520.33280.19470.052*
O40.5036 (4)0.5887 (3)0.21776 (6)0.0452 (5)
O11.3141 (4)0.0801 (4)0.00871 (7)0.0588 (6)
C11.0030 (5)0.0711 (4)0.06148 (7)0.0342 (6)
N11.2123 (5)0.1761 (4)0.03883 (7)0.0410 (5)
C70.4109 (5)0.2328 (4)0.13231 (8)0.0369 (6)
H7A0.25880.14960.12840.044*
H7B0.38010.37350.12050.044*
C90.6059 (5)0.4594 (4)0.19280 (7)0.0301 (5)
C80.4651 (4)0.2532 (4)0.18137 (7)0.0283 (5)
H80.57040.13250.19010.034*
C30.6976 (6)0.0771 (4)0.11762 (8)0.0391 (6)
H30.61800.14810.14030.047*
C50.7376 (5)0.2308 (4)0.07239 (8)0.0376 (6)
H50.68500.36630.06430.045*
C40.6219 (5)0.1297 (4)0.10701 (7)0.0327 (5)
C20.8872 (5)0.1774 (4)0.09522 (8)0.0405 (6)
H20.93660.31460.10270.049*
C60.9322 (5)0.1322 (4)0.04943 (8)0.0397 (6)
H61.01220.20160.02660.048*
O21.2768 (5)0.3521 (4)0.05090 (7)0.0589 (6)
O1W0.0704 (4)0.1769 (3)0.21144 (6)0.0468 (5)
H1WB0.04820.22620.18600.070*
H1WC0.18240.24970.22440.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0300 (9)0.0402 (10)0.0470 (10)0.0064 (8)0.0032 (7)0.0024 (8)
N20.0329 (10)0.0331 (10)0.0377 (11)0.0040 (10)0.0050 (8)0.0008 (9)
O40.0382 (10)0.0407 (10)0.0568 (11)0.0015 (9)0.0003 (9)0.0179 (9)
O10.0581 (13)0.0682 (14)0.0501 (12)0.0028 (12)0.0185 (10)0.0021 (11)
C10.0371 (14)0.0365 (12)0.0291 (11)0.0012 (11)0.0015 (10)0.0080 (10)
N10.0388 (12)0.0467 (13)0.0374 (11)0.0022 (11)0.0027 (9)0.0075 (10)
C70.0366 (13)0.0428 (13)0.0311 (12)0.0021 (12)0.0043 (10)0.0044 (11)
C90.0295 (12)0.0295 (11)0.0312 (11)0.0004 (10)0.0057 (9)0.0031 (10)
C80.0274 (11)0.0284 (11)0.0293 (11)0.0003 (10)0.0012 (9)0.0001 (9)
C30.0486 (15)0.0338 (12)0.0349 (12)0.0017 (12)0.0074 (12)0.0008 (11)
C50.0471 (15)0.0344 (12)0.0313 (12)0.0031 (12)0.0031 (11)0.0021 (10)
C40.0348 (13)0.0351 (12)0.0283 (11)0.0023 (11)0.0019 (9)0.0050 (10)
C20.0537 (16)0.0315 (12)0.0364 (12)0.0009 (12)0.0017 (12)0.0013 (11)
C60.0473 (15)0.0415 (14)0.0304 (11)0.0002 (12)0.0038 (12)0.0001 (11)
O20.0594 (14)0.0560 (12)0.0612 (13)0.0206 (12)0.0009 (12)0.0009 (11)
O1W0.0493 (11)0.0347 (9)0.0563 (11)0.0032 (9)0.0051 (9)0.0047 (9)
Geometric parameters (Å, º) top
O3—C91.255 (3)C7—H7B0.9700
N2—C81.484 (3)C9—C81.537 (3)
N2—H2A0.8900C8—H80.9800
N2—H2B0.8900C3—C21.374 (4)
N2—H2C0.8900C3—C41.398 (4)
O4—C91.243 (3)C3—H30.9300
O1—N11.231 (3)C5—C41.384 (3)
C1—C21.379 (4)C5—C61.397 (4)
C1—C61.382 (4)C5—H50.9300
C1—N11.469 (3)C2—H20.9300
N1—O21.216 (3)C6—H60.9300
C7—C41.511 (3)O1W—H1WB0.8502
C7—C81.541 (3)O1W—H1WC0.8496
C7—H7A0.9700
C8—N2—H2A109.5N2—C8—C7109.62 (18)
C8—N2—H2B109.5C9—C8—C7112.6 (2)
H2A—N2—H2B109.5N2—C8—H8108.1
C8—N2—H2C109.5C9—C8—H8108.1
H2A—N2—H2C109.5C7—C8—H8108.1
H2B—N2—H2C109.5C2—C3—C4121.3 (2)
C2—C1—C6121.9 (2)C2—C3—H3119.3
C2—C1—N1118.5 (2)C4—C3—H3119.3
C6—C1—N1119.6 (2)C4—C5—C6120.9 (2)
O2—N1—O1123.5 (3)C4—C5—H5119.5
O2—N1—C1118.5 (2)C6—C5—H5119.5
O1—N1—C1118.0 (2)C5—C4—C3118.6 (2)
C4—C7—C8113.6 (2)C5—C4—C7121.9 (2)
C4—C7—H7A108.8C3—C4—C7119.5 (2)
C8—C7—H7A108.8C3—C2—C1118.8 (2)
C4—C7—H7B108.8C3—C2—H2120.6
C8—C7—H7B108.8C1—C2—H2120.6
H7A—C7—H7B107.7C1—C6—C5118.4 (2)
O4—C9—O3125.8 (2)C1—C6—H6120.8
O4—C9—C8118.6 (2)C5—C6—H6120.8
O3—C9—C8115.5 (2)H1WB—O1W—H1WC109.4
N2—C8—C9110.03 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1W0.891.882.760 (3)168
N2—H2A···O1Wi0.892.433.029 (3)125
N2—H2A···O4ii0.892.292.913 (3)127
N2—H2C···O3iii0.891.922.797 (3)166
O1W—H1WB···O3iv0.852.232.764 (3)121
O1W—H1WC···O4v0.852.002.740 (3)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x1, y1, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H10N2O4·H2O
Mr228.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.3141 (8), 6.2823 (7), 30.752 (4)
V3)1026.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.970, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
10728, 1466, 1261
Rint0.046
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.09
No. of reflections1466
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrystalClear (Rigaku, 2005), CrystalClear (Rigaku, 2005, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1W0.891.882.760 (3)168.4
N2—H2A···O1Wi0.892.433.029 (3)125.1
N2—H2A···O4ii0.892.292.913 (3)126.7
N2—H2C···O3iii0.891.922.797 (3)166.1
O1W—H1WB···O3iv0.852.232.764 (3)120.6
O1W—H1WC···O4v0.852.002.740 (3)145.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x1, y1, z; (v) x, y1, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationArki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43–S54.  Web of Science CrossRef CAS Google Scholar
First citationAzim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523–1529.  Web of Science CrossRef CAS Google Scholar
First citationHauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305-2309.  Web of Science CrossRef CAS Google Scholar
First citationLucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703–707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds