metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido-1κBr-tri­carbonyl-2κ3C-(2η5-cyclo­penta­dien­yl)molybdenum(I)tungsten(I)(WMo)

aUniversity of the Western Cape, Modderdam Road, Bellville, Cape Town 7535, South Africa, bDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and cSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 23 April 2008; accepted 30 April 2008; online 7 May 2008)

The title compound, [WMoBr(C5H5)(CO)3], is built up from a pseudo-square-pyramidal piano-stool coordination around the Mo atom, the important geometry being Mo—W = 2.6872 (7) Å, W—Br = 2.5591 (9) Å and Mo—W—Br = 158.35 (3)°.

Related literature

For related literature, see Albright et al. (1978[Albright, M. J., Glick, D. M. & Oliver, J. P. (1978). J. Organomet. Chem. 161, 221-231.]); Bueno & Churchill (1981[Bueno, C. & Churchill, R. M. (1981). Inorg. Chem. 20, 2197-2202.]); Changamu et al. (2006[Changamu, E. O., Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2006). J. Organomet. Chem. 691, 4615-4625.]); Friedrich et al. (2004[Friedrich, H. B., Howie, R. A., Laing, M. & Onani, M. O. (2004). J. Organomet. Chem. 689, 181-193.]).

[Scheme 1]

Experimental

Crystal data
  • [WMoBr(C5H5)(CO)3]

  • Mr = 508.82

  • Tetragonal, [P \overline 42_1 c ]

  • a = 11.9375 (9) Å

  • c = 15.546 (2) Å

  • V = 2215.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 15.09 mm−1

  • T = 100 (2) K

  • 0.11 × 0.10 × 0.07 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.251, Tmax = 0.347

  • 13298 measured reflections

  • 2673 independent reflections

  • 2497 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.069

  • S = 1.02

  • 2673 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.72 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1118 Friedel pairs

  • Flack parameter: 0.00 (1)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The compound I was a by-product of a study on the functionalization of paraffins using transition metals. The functionalized compounds have potential applications in catalysis and organic syntheses (Changamu et al., 2006). The compound I is similar to the reported structure of (η5-C5H5(CO)3MoHgCl (Bueno et al., 1981), Albright et al. (1978). The bond distances of W—Mo, 2.6872 (7) Å and W—Br, 2.5591 (9) Å are comparable to Hg—Mo, 2.693 (30) Å and Hg—Cl, 2.437 (8) Å respectively. The slight difference between the bond lenghts involving the halides could be attributed to the difference in electronegativity and hence basicity between bromine and chlorine.The coordination around Mo is a pseudo-square pyramidal piano stool arrangement.(Fig. 1)

Related literature top

For related literature, see Albright et al. (1978); Bueno & Churchill (1981); Changamu et al. (2006); Friedrich et al. (2004).

Experimental top

The compound I was prepared according to a reported procedure (Friedrich et al., 2004) and crystals were grown by slow evaporation of a mixture of dichloromethane and hexane at 263 K.

Refinement top

Hydrogen atoms were treated as riding on their parent C atoms with C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level.
Bromido-1κBr-tricarbonyl-2κ3C-(2η5- cyclopentadienyl)molybdenum(I)tungsten(I)(W—Mo) top
Crystal data top
[WMoBr(C5H5)(CO)3]Dx = 3.051 Mg m3
Mr = 508.82Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 2238 reflections
Hall symbol: P -4 2nθ = 2.2–25.5°
a = 11.9375 (9) ŵ = 15.09 mm1
c = 15.546 (2) ÅT = 100 K
V = 2215.4 (4) Å3Block, yellow
Z = 80.11 × 0.10 × 0.07 mm
F(000) = 1824
Data collection top
Bruker APEX CCD area-detector
diffractometer
2673 independent reflections
Radiation source: fine-focus sealed tube2497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1514
Tmin = 0.251, Tmax = 0.347k = 815
13298 measured reflectionsl = 2018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0238P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2673 reflectionsΔρmax = 1.31 e Å3
127 parametersΔρmin = 0.72 e Å3
0 restraintsAbsolute structure: Flack (1983), 1118 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (1)
Crystal data top
[WMoBr(C5H5)(CO)3]Z = 8
Mr = 508.82Mo Kα radiation
Tetragonal, P421cµ = 15.09 mm1
a = 11.9375 (9) ÅT = 100 K
c = 15.546 (2) Å0.11 × 0.10 × 0.07 mm
V = 2215.4 (4) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2673 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2497 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.347Rint = 0.048
13298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.069Δρmax = 1.31 e Å3
S = 1.02Δρmin = 0.72 e Å3
2673 reflectionsAbsolute structure: Flack (1983), 1118 Friedel pairs
127 parametersAbsolute structure parameter: 0.00 (1)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.64476 (3)0.39974 (3)0.89630 (2)0.01742 (9)
Mo10.73518 (6)0.20182 (6)0.85204 (5)0.01833 (16)
Br10.62054 (7)0.61253 (7)0.90359 (5)0.01974 (17)
O10.5124 (6)0.1402 (6)0.9503 (5)0.0480 (19)
O20.6348 (5)0.0161 (6)0.7340 (4)0.0402 (17)
O30.6948 (5)0.3305 (6)0.6794 (4)0.0330 (16)
C10.5937 (8)0.1680 (7)0.9122 (6)0.031 (2)
C20.6724 (7)0.0833 (7)0.7766 (6)0.026 (2)
C30.7057 (7)0.2868 (8)0.7450 (6)0.027 (2)
C40.8467 (10)0.1507 (11)0.9698 (7)0.047 (3)
H40.81510.12451.02220.057*
C50.8729 (8)0.0831 (8)0.9024 (7)0.038 (2)
H50.86220.00430.89960.046*
C60.9203 (7)0.1535 (11)0.8354 (6)0.044 (3)
H60.94680.13080.78050.052*
C70.9181 (9)0.2684 (10)0.8715 (9)0.059 (4)
H70.94310.33590.84550.071*
C80.8694 (10)0.2533 (11)0.9549 (7)0.052 (3)
H80.85570.31260.99430.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01888 (17)0.01447 (16)0.01889 (15)0.00532 (12)0.00265 (14)0.00152 (14)
Mo10.0158 (3)0.0170 (3)0.0222 (3)0.0033 (3)0.0015 (3)0.0020 (3)
Br10.0214 (4)0.0168 (4)0.0209 (4)0.0015 (3)0.0032 (3)0.0010 (3)
O10.036 (4)0.032 (4)0.076 (5)0.006 (3)0.029 (4)0.011 (4)
O20.034 (4)0.033 (4)0.054 (4)0.006 (3)0.008 (3)0.016 (3)
O30.035 (4)0.045 (4)0.019 (3)0.007 (3)0.005 (3)0.002 (3)
C10.032 (5)0.015 (4)0.045 (6)0.009 (4)0.004 (5)0.003 (4)
C20.020 (5)0.020 (5)0.037 (5)0.003 (4)0.006 (4)0.012 (4)
C30.020 (5)0.033 (5)0.029 (5)0.002 (4)0.004 (4)0.008 (4)
C40.042 (6)0.069 (8)0.030 (5)0.002 (7)0.000 (5)0.002 (6)
C50.033 (5)0.030 (5)0.053 (6)0.015 (4)0.025 (5)0.004 (5)
C60.016 (5)0.091 (9)0.024 (5)0.028 (5)0.007 (4)0.007 (5)
C70.025 (6)0.043 (7)0.110 (11)0.014 (5)0.036 (6)0.048 (7)
C80.037 (7)0.058 (8)0.061 (7)0.015 (6)0.016 (5)0.035 (7)
Geometric parameters (Å, º) top
W1—Br12.5591 (9)O3—C31.152 (12)
W1—Mo12.6872 (7)C4—C81.276 (17)
Mo1—C11.972 (10)C4—C51.359 (15)
Mo1—C31.980 (10)C4—H40.9500
Mo1—C21.985 (8)C5—C61.453 (15)
Mo1—C62.298 (8)C5—H50.9500
Mo1—C52.307 (8)C6—C71.482 (17)
Mo1—C72.344 (10)C6—H60.9500
Mo1—C42.345 (12)C7—C81.433 (16)
Mo1—C82.346 (10)C7—H70.9500
O1—C11.184 (11)C8—H80.9500
O2—C21.132 (10)
Br1—W1—Mo1158.35 (3)C4—Mo1—W1104.9 (3)
C1—Mo1—C3110.5 (4)C8—Mo1—W182.5 (3)
C1—Mo1—C279.1 (4)O1—C1—Mo1175.0 (8)
C3—Mo1—C278.5 (4)O2—C2—Mo1178.9 (8)
C1—Mo1—C6145.6 (4)O3—C3—Mo1174.3 (8)
C3—Mo1—C6101.8 (4)C8—C4—C5112.4 (11)
C2—Mo1—C696.8 (4)C8—C4—Mo174.3 (7)
C1—Mo1—C5108.9 (4)C5—C4—Mo171.5 (6)
C3—Mo1—C5136.6 (4)C8—C4—H4123.8
C2—Mo1—C591.8 (4)C5—C4—H4123.8
C6—Mo1—C536.8 (4)Mo1—C4—H4121.9
C1—Mo1—C7143.7 (4)C4—C5—C6107.4 (10)
C3—Mo1—C795.8 (4)C4—C5—Mo174.5 (6)
C2—Mo1—C7132.1 (4)C6—C5—Mo171.3 (5)
C6—Mo1—C737.2 (4)C4—C5—H5126.3
C5—Mo1—C760.0 (4)C6—C5—H5126.3
C1—Mo1—C493.6 (4)Mo1—C5—H5119.8
C3—Mo1—C4152.9 (4)C5—C6—C7104.9 (9)
C2—Mo1—C4119.4 (4)C5—C6—Mo171.9 (5)
C6—Mo1—C458.5 (4)C7—C6—Mo173.0 (5)
C5—Mo1—C434.0 (4)C5—C6—H6127.6
C7—Mo1—C457.2 (4)C7—C6—H6127.6
C1—Mo1—C8108.4 (4)Mo1—C6—H6119.6
C3—Mo1—C8124.1 (4)C8—C7—C6103.5 (9)
C2—Mo1—C8148.0 (4)C8—C7—Mo172.3 (6)
C6—Mo1—C859.1 (4)C6—C7—Mo169.7 (5)
C5—Mo1—C856.1 (4)C8—C7—H7128.2
C7—Mo1—C835.6 (4)C6—C7—H7128.2
C4—Mo1—C831.6 (4)Mo1—C7—H7121.7
C1—Mo1—W173.4 (2)C4—C8—C7111.8 (10)
C3—Mo1—W172.1 (3)C4—C8—Mo174.2 (7)
C2—Mo1—W1128.8 (3)C7—C8—Mo172.1 (6)
C6—Mo1—W1129.5 (3)C4—C8—H8124.1
C5—Mo1—W1137.7 (3)C7—C8—H8124.1
C7—Mo1—W192.5 (3)Mo1—C8—H8121.1
Br1—W1—Mo1—C1172.7 (3)C8—Mo1—C6—C573.6 (7)
Br1—W1—Mo1—C354.0 (3)W1—Mo1—C6—C5119.9 (6)
Br1—W1—Mo1—C2112.2 (3)C1—Mo1—C6—C7115.9 (9)
Br1—W1—Mo1—C636.8 (3)C3—Mo1—C6—C783.9 (7)
Br1—W1—Mo1—C587.2 (4)C2—Mo1—C6—C7163.6 (6)
Br1—W1—Mo1—C741.3 (3)C5—Mo1—C6—C7112.4 (8)
Br1—W1—Mo1—C497.9 (3)C4—Mo1—C6—C776.0 (7)
Br1—W1—Mo1—C875.5 (3)C8—Mo1—C6—C738.9 (6)
C1—Mo1—C4—C8120.1 (8)W1—Mo1—C6—C77.4 (7)
C3—Mo1—C4—C833.5 (13)C5—C6—C7—C80.4 (9)
C2—Mo1—C4—C8160.4 (7)Mo1—C6—C7—C865.0 (7)
C6—Mo1—C4—C881.2 (8)C5—C6—C7—Mo165.4 (6)
C5—Mo1—C4—C8120.8 (11)C1—Mo1—C7—C88.5 (10)
C7—Mo1—C4—C836.9 (7)C3—Mo1—C7—C8145.7 (7)
W1—Mo1—C4—C846.3 (8)C2—Mo1—C7—C8134.5 (8)
C1—Mo1—C4—C5119.1 (7)C6—Mo1—C7—C8112.3 (8)
C3—Mo1—C4—C587.3 (11)C5—Mo1—C7—C872.6 (7)
C2—Mo1—C4—C539.6 (8)C4—Mo1—C7—C832.7 (6)
C6—Mo1—C4—C539.6 (7)W1—Mo1—C7—C873.4 (7)
C7—Mo1—C4—C583.8 (8)C1—Mo1—C7—C6120.8 (8)
C8—Mo1—C4—C5120.8 (11)C3—Mo1—C7—C6102.0 (6)
W1—Mo1—C4—C5167.1 (6)C2—Mo1—C7—C622.2 (8)
C8—C4—C5—C60.7 (13)C5—Mo1—C7—C639.7 (6)
Mo1—C4—C5—C664.2 (6)C4—Mo1—C7—C679.6 (7)
C8—C4—C5—Mo163.4 (10)C8—Mo1—C7—C6112.3 (8)
C1—Mo1—C5—C467.1 (8)W1—Mo1—C7—C6174.3 (6)
C3—Mo1—C5—C4138.6 (7)C5—C4—C8—C71.0 (14)
C2—Mo1—C5—C4146.2 (7)Mo1—C4—C8—C762.8 (8)
C6—Mo1—C5—C4115.0 (10)C5—C4—C8—Mo161.8 (9)
C7—Mo1—C5—C474.7 (8)C6—C7—C8—C40.9 (12)
C8—Mo1—C5—C432.8 (7)Mo1—C7—C8—C464.1 (9)
W1—Mo1—C5—C418.7 (9)C6—C7—C8—Mo163.2 (6)
C1—Mo1—C5—C6177.9 (6)C1—Mo1—C8—C465.5 (8)
C3—Mo1—C5—C623.6 (8)C3—Mo1—C8—C4162.4 (7)
C2—Mo1—C5—C698.8 (6)C2—Mo1—C8—C433.5 (12)
C7—Mo1—C5—C640.2 (6)C6—Mo1—C8—C479.1 (8)
C4—Mo1—C5—C6115.0 (10)C5—Mo1—C8—C435.3 (7)
C8—Mo1—C5—C682.2 (7)C7—Mo1—C8—C4119.8 (10)
W1—Mo1—C5—C696.2 (7)W1—Mo1—C8—C4135.2 (7)
C4—C5—C6—C70.1 (10)C1—Mo1—C8—C7174.7 (7)
Mo1—C5—C6—C766.2 (6)C3—Mo1—C8—C742.6 (8)
C4—C5—C6—Mo166.3 (7)C2—Mo1—C8—C786.3 (11)
C1—Mo1—C6—C53.5 (10)C6—Mo1—C8—C740.7 (6)
C3—Mo1—C6—C5163.7 (6)C5—Mo1—C8—C784.5 (7)
C2—Mo1—C6—C584.0 (6)C4—Mo1—C8—C7119.8 (10)
C7—Mo1—C6—C5112.4 (8)W1—Mo1—C8—C7105.0 (7)
C4—Mo1—C6—C536.5 (6)

Experimental details

Crystal data
Chemical formula[WMoBr(C5H5)(CO)3]
Mr508.82
Crystal system, space groupTetragonal, P421c
Temperature (K)100
a, c (Å)11.9375 (9), 15.546 (2)
V3)2215.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)15.09
Crystal size (mm)0.11 × 0.10 × 0.07
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.251, 0.347
No. of measured, independent and
observed [I > 2σ(I)] reflections
13298, 2673, 2497
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 1.02
No. of reflections2673
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.72
Absolute structureFlack (1983), 1118 Friedel pairs
Absolute structure parameter0.00 (1)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour 2001), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2001).

 

Acknowledgements

The authors are grateful to the NRF, WSU and UWC for funding, and to Miss Lungelwa Dyantyi for assistance with the experimental work.

References

First citationAlbright, M. J., Glick, D. M. & Oliver, J. P. (1978). J. Organomet. Chem. 161, 221–231.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBueno, C. & Churchill, R. M. (1981). Inorg. Chem. 20, 2197–2202.  CSD CrossRef CAS Web of Science Google Scholar
First citationChangamu, E. O., Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2006). J. Organomet. Chem. 691, 4615–4625.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedrich, H. B., Howie, R. A., Laing, M. & Onani, M. O. (2004). J. Organomet. Chem. 689, 181–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds