metal-organic compounds
Bromido-1κBr-tricarbonyl-2κ3C-(2η5-cyclopentadienyl)molybdenum(I)tungsten(I)(W—Mo)
aUniversity of the Western Cape, Modderdam Road, Bellville, Cape Town 7535, South Africa, bDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and cSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za
The title compound, [WMoBr(C5H5)(CO)3], is built up from a pseudo-square-pyramidal piano-stool coordination around the Mo atom, the important geometry being Mo—W = 2.6872 (7) Å, W—Br = 2.5591 (9) Å and Mo—W—Br = 158.35 (3)°.
Related literature
For related literature, see Albright et al. (1978); Bueno & Churchill (1981); Changamu et al. (2006); Friedrich et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808012828/dn2343sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012828/dn2343Isup2.hkl
The compound I was prepared according to a reported procedure (Friedrich et al., 2004) and crystals were grown by slow evaporation of a mixture of dichloromethane and hexane at 263 K.
Hydrogen atoms were treated as riding on their parent C atoms with C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2001).Fig. 1. Molecular structure of the title complex showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level. |
[WMoBr(C5H5)(CO)3] | Dx = 3.051 Mg m−3 |
Mr = 508.82 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 2238 reflections |
Hall symbol: P -4 2n | θ = 2.2–25.5° |
a = 11.9375 (9) Å | µ = 15.09 mm−1 |
c = 15.546 (2) Å | T = 100 K |
V = 2215.4 (4) Å3 | Block, yellow |
Z = 8 | 0.11 × 0.10 × 0.07 mm |
F(000) = 1824 |
Bruker APEX CCD area-detector diffractometer | 2673 independent reflections |
Radiation source: fine-focus sealed tube | 2497 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −15→14 |
Tmin = 0.251, Tmax = 0.347 | k = −8→15 |
13298 measured reflections | l = −20→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0238P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2673 reflections | Δρmax = 1.31 e Å−3 |
127 parameters | Δρmin = −0.72 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1118 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (1) |
[WMoBr(C5H5)(CO)3] | Z = 8 |
Mr = 508.82 | Mo Kα radiation |
Tetragonal, P421c | µ = 15.09 mm−1 |
a = 11.9375 (9) Å | T = 100 K |
c = 15.546 (2) Å | 0.11 × 0.10 × 0.07 mm |
V = 2215.4 (4) Å3 |
Bruker APEX CCD area-detector diffractometer | 2673 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2497 reflections with I > 2σ(I) |
Tmin = 0.251, Tmax = 0.347 | Rint = 0.048 |
13298 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.069 | Δρmax = 1.31 e Å−3 |
S = 1.02 | Δρmin = −0.72 e Å−3 |
2673 reflections | Absolute structure: Flack (1983), 1118 Friedel pairs |
127 parameters | Absolute structure parameter: 0.00 (1) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
W1 | 0.64476 (3) | 0.39974 (3) | 0.89630 (2) | 0.01742 (9) | |
Mo1 | 0.73518 (6) | 0.20182 (6) | 0.85204 (5) | 0.01833 (16) | |
Br1 | 0.62054 (7) | 0.61253 (7) | 0.90359 (5) | 0.01974 (17) | |
O1 | 0.5124 (6) | 0.1402 (6) | 0.9503 (5) | 0.0480 (19) | |
O2 | 0.6348 (5) | 0.0161 (6) | 0.7340 (4) | 0.0402 (17) | |
O3 | 0.6948 (5) | 0.3305 (6) | 0.6794 (4) | 0.0330 (16) | |
C1 | 0.5937 (8) | 0.1680 (7) | 0.9122 (6) | 0.031 (2) | |
C2 | 0.6724 (7) | 0.0833 (7) | 0.7766 (6) | 0.026 (2) | |
C3 | 0.7057 (7) | 0.2868 (8) | 0.7450 (6) | 0.027 (2) | |
C4 | 0.8467 (10) | 0.1507 (11) | 0.9698 (7) | 0.047 (3) | |
H4 | 0.8151 | 0.1245 | 1.0222 | 0.057* | |
C5 | 0.8729 (8) | 0.0831 (8) | 0.9024 (7) | 0.038 (2) | |
H5 | 0.8622 | 0.0043 | 0.8996 | 0.046* | |
C6 | 0.9203 (7) | 0.1535 (11) | 0.8354 (6) | 0.044 (3) | |
H6 | 0.9468 | 0.1308 | 0.7805 | 0.052* | |
C7 | 0.9181 (9) | 0.2684 (10) | 0.8715 (9) | 0.059 (4) | |
H7 | 0.9431 | 0.3359 | 0.8455 | 0.071* | |
C8 | 0.8694 (10) | 0.2533 (11) | 0.9549 (7) | 0.052 (3) | |
H8 | 0.8557 | 0.3126 | 0.9943 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.01888 (17) | 0.01447 (16) | 0.01889 (15) | 0.00532 (12) | 0.00265 (14) | −0.00152 (14) |
Mo1 | 0.0158 (3) | 0.0170 (3) | 0.0222 (3) | 0.0033 (3) | 0.0015 (3) | −0.0020 (3) |
Br1 | 0.0214 (4) | 0.0168 (4) | 0.0209 (4) | 0.0015 (3) | 0.0032 (3) | 0.0010 (3) |
O1 | 0.036 (4) | 0.032 (4) | 0.076 (5) | 0.006 (3) | 0.029 (4) | 0.011 (4) |
O2 | 0.034 (4) | 0.033 (4) | 0.054 (4) | 0.006 (3) | −0.008 (3) | −0.016 (3) |
O3 | 0.035 (4) | 0.045 (4) | 0.019 (3) | 0.007 (3) | −0.005 (3) | 0.002 (3) |
C1 | 0.032 (5) | 0.015 (4) | 0.045 (6) | 0.009 (4) | 0.004 (5) | 0.003 (4) |
C2 | 0.020 (5) | 0.020 (5) | 0.037 (5) | 0.003 (4) | 0.006 (4) | −0.012 (4) |
C3 | 0.020 (5) | 0.033 (5) | 0.029 (5) | 0.002 (4) | −0.004 (4) | −0.008 (4) |
C4 | 0.042 (6) | 0.069 (8) | 0.030 (5) | −0.002 (7) | 0.000 (5) | 0.002 (6) |
C5 | 0.033 (5) | 0.030 (5) | 0.053 (6) | 0.015 (4) | −0.025 (5) | 0.004 (5) |
C6 | 0.016 (5) | 0.091 (9) | 0.024 (5) | 0.028 (5) | −0.007 (4) | −0.007 (5) |
C7 | 0.025 (6) | 0.043 (7) | 0.110 (11) | −0.014 (5) | −0.036 (6) | 0.048 (7) |
C8 | 0.037 (7) | 0.058 (8) | 0.061 (7) | 0.015 (6) | −0.016 (5) | −0.035 (7) |
W1—Br1 | 2.5591 (9) | O3—C3 | 1.152 (12) |
W1—Mo1 | 2.6872 (7) | C4—C8 | 1.276 (17) |
Mo1—C1 | 1.972 (10) | C4—C5 | 1.359 (15) |
Mo1—C3 | 1.980 (10) | C4—H4 | 0.9500 |
Mo1—C2 | 1.985 (8) | C5—C6 | 1.453 (15) |
Mo1—C6 | 2.298 (8) | C5—H5 | 0.9500 |
Mo1—C5 | 2.307 (8) | C6—C7 | 1.482 (17) |
Mo1—C7 | 2.344 (10) | C6—H6 | 0.9500 |
Mo1—C4 | 2.345 (12) | C7—C8 | 1.433 (16) |
Mo1—C8 | 2.346 (10) | C7—H7 | 0.9500 |
O1—C1 | 1.184 (11) | C8—H8 | 0.9500 |
O2—C2 | 1.132 (10) | ||
Br1—W1—Mo1 | 158.35 (3) | C4—Mo1—W1 | 104.9 (3) |
C1—Mo1—C3 | 110.5 (4) | C8—Mo1—W1 | 82.5 (3) |
C1—Mo1—C2 | 79.1 (4) | O1—C1—Mo1 | 175.0 (8) |
C3—Mo1—C2 | 78.5 (4) | O2—C2—Mo1 | 178.9 (8) |
C1—Mo1—C6 | 145.6 (4) | O3—C3—Mo1 | 174.3 (8) |
C3—Mo1—C6 | 101.8 (4) | C8—C4—C5 | 112.4 (11) |
C2—Mo1—C6 | 96.8 (4) | C8—C4—Mo1 | 74.3 (7) |
C1—Mo1—C5 | 108.9 (4) | C5—C4—Mo1 | 71.5 (6) |
C3—Mo1—C5 | 136.6 (4) | C8—C4—H4 | 123.8 |
C2—Mo1—C5 | 91.8 (4) | C5—C4—H4 | 123.8 |
C6—Mo1—C5 | 36.8 (4) | Mo1—C4—H4 | 121.9 |
C1—Mo1—C7 | 143.7 (4) | C4—C5—C6 | 107.4 (10) |
C3—Mo1—C7 | 95.8 (4) | C4—C5—Mo1 | 74.5 (6) |
C2—Mo1—C7 | 132.1 (4) | C6—C5—Mo1 | 71.3 (5) |
C6—Mo1—C7 | 37.2 (4) | C4—C5—H5 | 126.3 |
C5—Mo1—C7 | 60.0 (4) | C6—C5—H5 | 126.3 |
C1—Mo1—C4 | 93.6 (4) | Mo1—C5—H5 | 119.8 |
C3—Mo1—C4 | 152.9 (4) | C5—C6—C7 | 104.9 (9) |
C2—Mo1—C4 | 119.4 (4) | C5—C6—Mo1 | 71.9 (5) |
C6—Mo1—C4 | 58.5 (4) | C7—C6—Mo1 | 73.0 (5) |
C5—Mo1—C4 | 34.0 (4) | C5—C6—H6 | 127.6 |
C7—Mo1—C4 | 57.2 (4) | C7—C6—H6 | 127.6 |
C1—Mo1—C8 | 108.4 (4) | Mo1—C6—H6 | 119.6 |
C3—Mo1—C8 | 124.1 (4) | C8—C7—C6 | 103.5 (9) |
C2—Mo1—C8 | 148.0 (4) | C8—C7—Mo1 | 72.3 (6) |
C6—Mo1—C8 | 59.1 (4) | C6—C7—Mo1 | 69.7 (5) |
C5—Mo1—C8 | 56.1 (4) | C8—C7—H7 | 128.2 |
C7—Mo1—C8 | 35.6 (4) | C6—C7—H7 | 128.2 |
C4—Mo1—C8 | 31.6 (4) | Mo1—C7—H7 | 121.7 |
C1—Mo1—W1 | 73.4 (2) | C4—C8—C7 | 111.8 (10) |
C3—Mo1—W1 | 72.1 (3) | C4—C8—Mo1 | 74.2 (7) |
C2—Mo1—W1 | 128.8 (3) | C7—C8—Mo1 | 72.1 (6) |
C6—Mo1—W1 | 129.5 (3) | C4—C8—H8 | 124.1 |
C5—Mo1—W1 | 137.7 (3) | C7—C8—H8 | 124.1 |
C7—Mo1—W1 | 92.5 (3) | Mo1—C8—H8 | 121.1 |
Br1—W1—Mo1—C1 | −172.7 (3) | C8—Mo1—C6—C5 | 73.6 (7) |
Br1—W1—Mo1—C3 | −54.0 (3) | W1—Mo1—C6—C5 | 119.9 (6) |
Br1—W1—Mo1—C2 | −112.2 (3) | C1—Mo1—C6—C7 | −115.9 (9) |
Br1—W1—Mo1—C6 | 36.8 (3) | C3—Mo1—C6—C7 | 83.9 (7) |
Br1—W1—Mo1—C5 | 87.2 (4) | C2—Mo1—C6—C7 | 163.6 (6) |
Br1—W1—Mo1—C7 | 41.3 (3) | C5—Mo1—C6—C7 | −112.4 (8) |
Br1—W1—Mo1—C4 | 97.9 (3) | C4—Mo1—C6—C7 | −76.0 (7) |
Br1—W1—Mo1—C8 | 75.5 (3) | C8—Mo1—C6—C7 | −38.9 (6) |
C1—Mo1—C4—C8 | −120.1 (8) | W1—Mo1—C6—C7 | 7.4 (7) |
C3—Mo1—C4—C8 | 33.5 (13) | C5—C6—C7—C8 | −0.4 (9) |
C2—Mo1—C4—C8 | 160.4 (7) | Mo1—C6—C7—C8 | 65.0 (7) |
C6—Mo1—C4—C8 | 81.2 (8) | C5—C6—C7—Mo1 | −65.4 (6) |
C5—Mo1—C4—C8 | 120.8 (11) | C1—Mo1—C7—C8 | 8.5 (10) |
C7—Mo1—C4—C8 | 36.9 (7) | C3—Mo1—C7—C8 | 145.7 (7) |
W1—Mo1—C4—C8 | −46.3 (8) | C2—Mo1—C7—C8 | −134.5 (8) |
C1—Mo1—C4—C5 | 119.1 (7) | C6—Mo1—C7—C8 | −112.3 (8) |
C3—Mo1—C4—C5 | −87.3 (11) | C5—Mo1—C7—C8 | −72.6 (7) |
C2—Mo1—C4—C5 | 39.6 (8) | C4—Mo1—C7—C8 | −32.7 (6) |
C6—Mo1—C4—C5 | −39.6 (7) | W1—Mo1—C7—C8 | 73.4 (7) |
C7—Mo1—C4—C5 | −83.8 (8) | C1—Mo1—C7—C6 | 120.8 (8) |
C8—Mo1—C4—C5 | −120.8 (11) | C3—Mo1—C7—C6 | −102.0 (6) |
W1—Mo1—C4—C5 | −167.1 (6) | C2—Mo1—C7—C6 | −22.2 (8) |
C8—C4—C5—C6 | 0.7 (13) | C5—Mo1—C7—C6 | 39.7 (6) |
Mo1—C4—C5—C6 | 64.2 (6) | C4—Mo1—C7—C6 | 79.6 (7) |
C8—C4—C5—Mo1 | −63.4 (10) | C8—Mo1—C7—C6 | 112.3 (8) |
C1—Mo1—C5—C4 | −67.1 (8) | W1—Mo1—C7—C6 | −174.3 (6) |
C3—Mo1—C5—C4 | 138.6 (7) | C5—C4—C8—C7 | −1.0 (14) |
C2—Mo1—C5—C4 | −146.2 (7) | Mo1—C4—C8—C7 | −62.8 (8) |
C6—Mo1—C5—C4 | 115.0 (10) | C5—C4—C8—Mo1 | 61.8 (9) |
C7—Mo1—C5—C4 | 74.7 (8) | C6—C7—C8—C4 | 0.9 (12) |
C8—Mo1—C5—C4 | 32.8 (7) | Mo1—C7—C8—C4 | 64.1 (9) |
W1—Mo1—C5—C4 | 18.7 (9) | C6—C7—C8—Mo1 | −63.2 (6) |
C1—Mo1—C5—C6 | 177.9 (6) | C1—Mo1—C8—C4 | 65.5 (8) |
C3—Mo1—C5—C6 | 23.6 (8) | C3—Mo1—C8—C4 | −162.4 (7) |
C2—Mo1—C5—C6 | 98.8 (6) | C2—Mo1—C8—C4 | −33.5 (12) |
C7—Mo1—C5—C6 | −40.2 (6) | C6—Mo1—C8—C4 | −79.1 (8) |
C4—Mo1—C5—C6 | −115.0 (10) | C5—Mo1—C8—C4 | −35.3 (7) |
C8—Mo1—C5—C6 | −82.2 (7) | C7—Mo1—C8—C4 | −119.8 (10) |
W1—Mo1—C5—C6 | −96.2 (7) | W1—Mo1—C8—C4 | 135.2 (7) |
C4—C5—C6—C7 | −0.1 (10) | C1—Mo1—C8—C7 | −174.7 (7) |
Mo1—C5—C6—C7 | 66.2 (6) | C3—Mo1—C8—C7 | −42.6 (8) |
C4—C5—C6—Mo1 | −66.3 (7) | C2—Mo1—C8—C7 | 86.3 (11) |
C1—Mo1—C6—C5 | −3.5 (10) | C6—Mo1—C8—C7 | 40.7 (6) |
C3—Mo1—C6—C5 | −163.7 (6) | C5—Mo1—C8—C7 | 84.5 (7) |
C2—Mo1—C6—C5 | −84.0 (6) | C4—Mo1—C8—C7 | 119.8 (10) |
C7—Mo1—C6—C5 | 112.4 (8) | W1—Mo1—C8—C7 | −105.0 (7) |
C4—Mo1—C6—C5 | 36.5 (6) |
Experimental details
Crystal data | |
Chemical formula | [WMoBr(C5H5)(CO)3] |
Mr | 508.82 |
Crystal system, space group | Tetragonal, P421c |
Temperature (K) | 100 |
a, c (Å) | 11.9375 (9), 15.546 (2) |
V (Å3) | 2215.4 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 15.09 |
Crystal size (mm) | 0.11 × 0.10 × 0.07 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.251, 0.347 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13298, 2673, 2497 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.069, 1.02 |
No. of reflections | 2673 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.31, −0.72 |
Absolute structure | Flack (1983), 1118 Friedel pairs |
Absolute structure parameter | 0.00 (1) |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour 2001), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2001).
Acknowledgements
The authors are grateful to the NRF, WSU and UWC for funding, and to Miss Lungelwa Dyantyi for assistance with the experimental work.
References
Albright, M. J., Glick, D. M. & Oliver, J. P. (1978). J. Organomet. Chem. 161, 221–231. CSD CrossRef CAS Web of Science Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bueno, C. & Churchill, R. M. (1981). Inorg. Chem. 20, 2197–2202. CSD CrossRef CAS Web of Science Google Scholar
Changamu, E. O., Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2006). J. Organomet. Chem. 691, 4615–4625. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friedrich, H. B., Howie, R. A., Laing, M. & Onani, M. O. (2004). J. Organomet. Chem. 689, 181–193. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The compound I was a by-product of a study on the functionalization of paraffins using transition metals. The functionalized compounds have potential applications in catalysis and organic syntheses (Changamu et al., 2006). The compound I is similar to the reported structure of (η5-C5H5(CO)3MoHgCl (Bueno et al., 1981), Albright et al. (1978). The bond distances of W—Mo, 2.6872 (7) Å and W—Br, 2.5591 (9) Å are comparable to Hg—Mo, 2.693 (30) Å and Hg—Cl, 2.437 (8) Å respectively. The slight difference between the bond lenghts involving the halides could be attributed to the difference in electronegativity and hence basicity between bromine and chlorine.The coordination around Mo is a pseudo-square pyramidal piano stool arrangement.(Fig. 1)