organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-pyridylmeth­yl) hexa­nedioate

aSchool of Materials Science and Engineering, Shijiazhuang Railway Institute, Shijiazhuang 050043, People's Republic of China, and bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: chenyanxue8010@yahoo.com.cn

(Received 8 May 2008; accepted 13 May 2008; online 17 May 2008)

The asymmetric unit of the title compound, C18H20N2O4, contains one half-mol­ecule. The mol­ecule lies on an inversion centre and is roughly planar, the chains between the two pyridine rings being only slightly twisted, with torsion angles ranging from 170.9 (1) to 177.2 (1)°. Weak C—H⋯O hydrogen bonds result in the formation of a three-dimensional network.

Related literature

For related literature, see: Banfi et al. (2002[Banfi, S., Carlucci, L., Caruso, E., Ciani, G. & Proserpio, D. (2002). J. Chem. Soc. Dalton Trans. pp. 2714-2721.]); Magden & Basel (1984[Magden, A. & Basel, E. (1984). United States Patent US 4 461 898.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O4

  • Mr = 328.36

  • Monoclinic, P 21 /c

  • a = 9.1489 (18) Å

  • b = 10.164 (2) Å

  • c = 8.9206 (18) Å

  • β = 102.11 (3)°

  • V = 811.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.979, Tmax = 0.988

  • 9823 measured reflections

  • 1918 independent reflections

  • 1288 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 0.98

  • 1918 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2i 0.97 2.56 3.3333 (17) 137
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hexanedioic acid dipyridin-4-ylmethyl ester is a very important intermediate in the synthesis of cephalosporins (Magden & Basel, 1984). Also, it can be used as a ligand designed for the self-assembly of coordination frameworks and architectures (Banfi et al., 2002);

The title compound is arranged around an inversion centre located in the middle of the C9-C9i bond [symmetry code:(i) 1-x, 1-y, 1-z ] (Fig. 1). The molecule is roughly planar, the chains between the two pyridyl rings being only slightly twisted with torsion angles ranging from 170.9 (1) to 177.2 (1)° .

Weak intermolecular C—H···O hydrogen bonds (Table 1) result in the formation of a three dimensionnal network

Related literature top

For related literature, see: Banfi et al. (2002); Magden & Basel (1984).

Experimental top

4-pyridinemethanol (9.82 g, 0.09 mol) and dimethyl adipate (5.22 g, 0.03 mol) were stirred with 200 ml n-octane at 343 k,then titaniun tetraisopropoxide (0.2 g) was added.The mixture was heated to 399 k, the methanol was distilled off. After stirring at this temperature for 4 h,the reaction finished. The solvent was evaporated under reduced pressure. The product was purified by chromatography on silica. Crystals of hexanedioic acid dipyridin-4-ylmethyl ester were obtained by slow evaporation of a solution of ethyl acetation at room temperature(m.p. 359 k).

Refinement top

H atoms were positioned geometrically and refined as riding on their parent atoms [C—H distances are 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) = 1.2 Ueq(C)].

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I)with the atoms labelling scheme. Displacement ellopsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 1-x, 1-y, 1-z ]
Bis(4-pyridylmethyl) hexanedioate top
Crystal data top
C18H20N2O4F(000) = 348
Mr = 328.36Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2434 reflections
a = 9.1489 (18) Åθ = 2.3–27.9°
b = 10.164 (2) ŵ = 0.10 mm1
c = 8.9206 (18) ÅT = 113 K
β = 102.11 (3)°Block, colorless
V = 811.1 (3) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Rigaku Saturn
diffractometer
1918 independent reflections
Radiation source: rotating anode1288 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.060
ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1212
Tmin = 0.979, Tmax = 0.988k = 1313
9823 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
1918 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H20N2O4V = 811.1 (3) Å3
Mr = 328.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.1489 (18) ŵ = 0.10 mm1
b = 10.164 (2) ÅT = 113 K
c = 8.9206 (18) Å0.12 × 0.10 × 0.08 mm
β = 102.11 (3)°
Data collection top
Rigaku Saturn
diffractometer
1918 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1288 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.060
9823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.98Δρmax = 0.34 e Å3
1918 reflectionsΔρmin = 0.24 e Å3
109 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70599 (9)0.51214 (8)0.11415 (9)0.0198 (2)
O20.64123 (11)0.69241 (9)0.22847 (10)0.0307 (3)
N10.90646 (13)0.38939 (10)0.35175 (12)0.0234 (3)
C10.89598 (14)0.58417 (13)0.20251 (14)0.0219 (3)
H10.92180.67220.18540.026*
C20.93751 (15)0.51700 (13)0.32073 (15)0.0226 (3)
H20.99010.56250.38280.027*
C30.83041 (15)0.32799 (13)0.25920 (15)0.0250 (3)
H30.80820.23940.27730.030*
C40.78264 (14)0.38780 (13)0.13832 (14)0.0221 (3)
H40.72970.34040.07810.026*
C50.81535 (14)0.51996 (12)0.10895 (13)0.0184 (3)
C60.76640 (15)0.59800 (12)0.01395 (14)0.0206 (3)
H6A0.85090.64600.07270.025*
H6B0.69100.66140.03230.025*
C70.64740 (13)0.57452 (13)0.22139 (13)0.0188 (3)
C80.59372 (14)0.47965 (12)0.32611 (14)0.0200 (3)
H8A0.67510.42120.37070.024*
H8B0.51410.42640.26690.024*
C90.53658 (14)0.54786 (11)0.45402 (14)0.0196 (3)
H9A0.61930.59120.52190.023*
H9B0.46470.61480.41020.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (5)0.0179 (5)0.0184 (5)0.0006 (4)0.0133 (4)0.0013 (4)
O20.0492 (7)0.0193 (5)0.0301 (6)0.0007 (4)0.0230 (5)0.0018 (4)
N10.0283 (6)0.0223 (6)0.0218 (6)0.0034 (5)0.0102 (5)0.0005 (5)
C10.0242 (7)0.0193 (7)0.0236 (7)0.0012 (5)0.0081 (6)0.0020 (6)
C20.0244 (7)0.0263 (7)0.0197 (7)0.0016 (6)0.0106 (6)0.0040 (6)
C30.0288 (8)0.0211 (7)0.0263 (8)0.0004 (6)0.0089 (6)0.0040 (6)
C40.0235 (7)0.0249 (7)0.0199 (7)0.0010 (5)0.0093 (6)0.0018 (6)
C50.0189 (6)0.0216 (7)0.0145 (6)0.0016 (5)0.0033 (5)0.0012 (5)
C60.0283 (7)0.0175 (7)0.0191 (7)0.0018 (5)0.0122 (6)0.0023 (5)
C70.0199 (7)0.0208 (7)0.0168 (7)0.0002 (5)0.0062 (5)0.0028 (6)
C80.0240 (7)0.0183 (6)0.0202 (7)0.0005 (5)0.0106 (5)0.0010 (5)
C90.0220 (7)0.0204 (7)0.0187 (7)0.0001 (5)0.0098 (6)0.0005 (6)
Geometric parameters (Å, º) top
O1—C71.3489 (14)C4—H40.9300
O1—C61.4398 (14)C5—C61.4959 (17)
O2—C71.2019 (15)C6—H6A0.9700
N1—C31.3402 (16)C6—H6B0.9700
N1—C21.3441 (16)C7—C81.4954 (17)
C1—C21.3751 (17)C8—C91.5186 (17)
C1—C51.3874 (16)C8—H8A0.9700
C1—H10.9300C8—H8B0.9700
C2—H20.9300C9—C9i1.516 (2)
C3—C41.3860 (17)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.3891 (18)
C7—O1—C6114.63 (10)C5—C6—H6A109.6
C3—N1—C2115.92 (11)O1—C6—H6B109.6
C2—C1—C5119.68 (12)C5—C6—H6B109.6
C2—C1—H1120.2H6A—C6—H6B108.1
C5—C1—H1120.2O2—C7—O1122.40 (11)
N1—C2—C1123.82 (12)O2—C7—C8125.79 (11)
N1—C2—H2118.1O1—C7—C8111.80 (11)
C1—C2—H2118.1C7—C8—C9112.64 (10)
N1—C3—C4124.35 (12)C7—C8—H8A109.1
N1—C3—H3117.8C9—C8—H8A109.1
C4—C3—H3117.8C7—C8—H8B109.1
C3—C4—C5118.70 (11)C9—C8—H8B109.1
C3—C4—H4120.6H8A—C8—H8B107.8
C5—C4—H4120.6C9i—C9—C8111.98 (12)
C1—C5—C4117.52 (11)C9i—C9—H9A109.2
C1—C5—C6118.04 (11)C8—C9—H9A109.2
C4—C5—C6124.42 (11)C9i—C9—H9B109.2
O1—C6—C5110.27 (10)C8—C9—H9B109.2
O1—C6—H6A109.6H9A—C9—H9B107.9
C1—C5—C6—O1170.85 (11)O1—C7—C8—C9176.27 (10)
C6—O1—C7—C8177.17 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2ii0.972.563.3333 (17)137
Symmetry code: (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O4
Mr328.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)9.1489 (18), 10.164 (2), 8.9206 (18)
β (°) 102.11 (3)
V3)811.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9823, 1918, 1288
Rint0.060
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 0.98
No. of reflections1918
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2i0.972.563.3333 (17)136.6
Symmetry code: (i) x, y+3/2, z1/2.
 

References

First citationBanfi, S., Carlucci, L., Caruso, E., Ciani, G. & Proserpio, D. (2002). J. Chem. Soc. Dalton Trans. pp. 2714–2721.  Web of Science CSD CrossRef Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMagden, A. & Basel, E. (1984). United States Patent US 4 461 898.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds