organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,6R)-1-Methyl-8-aza­spiro­[5.6]dodecan-7-one

aDepartment of Chemistry, Univerisity of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: m.brimble@auckland.ac.nz

(Received 12 May 2008; accepted 20 May 2008; online 24 May 2008)

The crystal structure of the title compound, C12H21NO, has been investigated to establish the absolute stereochemistry at position 1. The absolute stereochemistry at the quaternary centre at position 6 is established to be R using an asymmetric Birch reductive alkyl­ation reaction for which the stereochemical outcome is known. The crystal structure indicates the presence of two conformers of the bicyclic (1R,6R)-spiro­lactam ring system that differ in the conformation adopted by the six-membered ring. In one conformer, the meth­yl group adopts an axial position whereas in the other conformer, the same methyl group adopts an equatorial position. In both conformers, the seven-membered ring adopts a chair conformation. The two conformers of the bicyclic spiro­lactam are connected to each other via inter­molecular N—H⋯O hydrogen bonds forming a heterodimer. The asymmetric unit contains two such dimers.

Related literature

For related literature, see: Brimble & Trzoss (2004[Brimble, M. A. & Trzoss, M. (2004). Tetrahedron, 60, 5613-5622.]); Brimble et al. (2005[Brimble, M. A., Crimmins, D. & Trzoss, M. (2005). ARKIVOC, (i), 39-52.]); Ciminiello et al. (2007[Ciminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Grauso, L., Tartaglione, L., Guerrini, F. & Pistocchi, R. (2007). J. Nat. Prod. 70, 1878-1883.]); Hu et al. (2001[Hu, T. M., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod. 64, 308-312.]); MacKinnon et al. (2006[MacKinnon, S. L., Walter, J. A., Quilliam, M. A., Cembella, A. D., Leblanc, P., Burton, I. W., Hardstaff, W. R. & Lewis, N. I. (2006). J. Nat. Prod. 69, 983-987.]); Schultz & Pettus (1997[Schultz, A. G. & Pettus, L. (1997). Tetrahedron Lett. 38, 5433-5436.]); Schultz et al. (1988[Schultz, A. G., Macielag, M., Padmanabhan, S., Taveras, A. G. & Welch, M. (1988). J. Am. Chem. Soc. 110, 7828-7841.]).

[Scheme 1]

Experimental

Crystal data
  • C12H21NO

  • Mr = 195.30

  • Triclinic, P 1

  • a = 8.5417 (2) Å

  • b = 10.2807 (2) Å

  • c = 12.6400 (3) Å

  • α = 102.850 (1)°

  • β = 90.091 (1)°

  • γ = 91.488 (1)°

  • V = 1081.78 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 90 (2) K

  • 0.34 × 0.26 × 0.23 mm

Data collection
  • Bruker SMART diffractometer with APEX2 CCD detector

  • Absorption correction: none

  • 25392 measured reflections

  • 5160 independent reflections

  • 4784 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.02

  • 5160 reflections

  • 509 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1B 0.86 2.11 2.967 (2) 173
N8B—H8B⋯O1 0.86 2.03 2.868 (2) 166
N8A—H8A⋯O1C 0.86 2.03 2.872 (2) 165
N8C—H8C⋯O1A 0.86 2.10 2.959 (2) 172

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title spirolactam was prepared as part of a synthetic program directed towards the synthesis of spirolides A and C that were isolated from the culture of a toxic clone of the dinoflagellate Alexandrium ostenfeldii (Hu et al., 2001, MacKinnon et al., 2006, Ciminiello et al., 2007). The work demonstrates methodology to access enantiopure 7,6-spirolactams. The quaternary spirocyclic centre is generally considered a challenging stereocentre to be constructed in a stereoselective fashion in organic synthesis (Brimble et al., 2005; Brimble & Trzoss, 2004). By employing (S)-methoxypyrrolidine as a chiral auxiliary, a highly diastereoselective Birch reductive alkylation (Schultz et al., 1988 and Schultz & Pettus, 1997) furnished the alkylated product with the desired stereochemistry at the quaternary carbon which was then converted to the title spirolactam in several steps. Since the stereochemistry at C6 is known to be R, the absolute configuration at C1 has therefore been assigned as R.

The crystal structure indicates the presence of two conformers of the enantiopure bicyclic (1R,6R)-spirolactam. While in both conformers, the 7,6-bicyclic ring system adopts a chair-chair conformation, the methyl group (C13) adopts a differing position between the conformer. In one conformer, the methyl group (C13) adopts an axial position whereas in the other conformer, the same methyl group (C13B) adopts an equatorial position on their associated cyclohexane ring. In solution at room temperature, the two conformers are rapidly interconverting to each other as shown by the total lack of dynamic effects in the 1H NMR spectrum at 400 MHz.

Each unit cell contains two heterodimers of the two chair-configured conformers of the bicyclic spirolactam. In each dimer, the axial and equatorial conformers are connected to each other by two adjacent intermolecular N—H···O hydrogen bonds (Figure 1).

Related literature top

For related literature, see: Brimble & Trzoss (2004); Brimble et al. (2005); Ciminiello et al. (2007); Hu et al. (2001); MacKinnon et al. (2006); Schultz & Pettus (1997); Schultz et al. (1988).

Experimental top

To (2'S,1R,2R)-2-methyl-1-(4'-aminobutane)-1-[{(2'- ethoxymethyl)pyrrolidinyl}carbonyl]-2,5-cyclohexane (47.9 mg, 0.2 mmol) in water (1.6 ml) was added concentrated HCl (1.6 ml) and the mixture was heated under reflux overnight. After cooling to room temperature, the mixture was concentrated in vacuo and dried in a freeze-drier. The crude amino acid salt was dissolved in CH2Cl2/DMF (14.4 ml, 2:1) and DIPEA (0.15 ml, 0.9 mmol) was added. This resultant mixture was added dropwise to a solution of (benzotriazole-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (229.0 mg, 0.4 mmol) and DMAP (53.8 mg, 0.4 mmol) in CH2Cl2/DMF (43.2 ml, 2:1) over 8.5 h using a syringe pump. After stirring for further 13 h, the mixture was concentrated in vacuo. The residual oil was dissolved in CH2Cl2 (50 ml) and washed with aqueous HCl solution (0.5 M, 2×50 ml). The combined aqueous layers were extracted with CH2Cl2 (60 ml). The combined organic layers were washed with saturated NaHCO3 solution (60 ml), dried over anhydrous MgSO4, filtered and concentrated in vacuo. Purification by flash chromatography (20:8070:30 EtOAc-hexanes) afforded the title compound (7.8 mg, 26%) as a white solid. Recrystallization from CH2Cl2 afforded white prisms.

M. P. 392.4–393.4 K.

HRMS (+EI) calculated for C12H21NO [M]+: 195.1623, found 195.1621.

IR (KBr plate neat) νmax 3285, 2925, 2860, 1645, 1460, 1330, 1280, 1120 cm-1.

1H NMR (400 MHz, CDCl3) δ 5.96 (1H, s, CONH), 3.34 (1 H, m, NHCHaHb), 3.08 (1 H, m, NHCHaHb), 2.15 (3 H, m, 1-CH and 5-CHaHb and 12-CHaHb), 1.74 (3H, m, 3-CHaHb, 5-CHaHb and 10-CHaHb), 1.50 (6 H, m, 2-CHaHb and 4-CHaHb and 10-CHaHb and 11-CH2 and 12-CHaHb), 1.32 (2 H, m, 3-CHaHb and 4-CHaHb), 1.17 (1 H, m, 2-CHaHb), 1.00 (3H, d, J = 7.1 Hz, 13-CH3).

13C NMR (100 MHz, CDCl3) δ 181.0 (7-CO), 47.1 (6-C), 42.0 (9-NCH2), 31.5 (1-CH), 29.6 (5-CH2 and 2-CH2), 29.4 (12-CH2), 27.9 (3-CH2), 23.3 (10-CH2), 21.7 (11-CH2), 20.6 (4-CH2), 15.5 (13-CH3).

m/z (+EI, 70 eV) 195 ([M]+, 100), 180 (20), 166 (11), 140 (16%).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.5 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme of the heterodimer of (1R,6R)-1-methyl-8-azaspiro[5.6]dodecan-7-one. The respective methyl group (C13) adopts an axial or equatorial position on its associated cyclohexane ring as shown. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
(1R,6R)-1-Methyl-8-azaspiro[5.6]dodecan-7-one top
Crystal data top
C12H21NOZ = 4
Mr = 195.30F(000) = 432
Triclinic, P1Dx = 1.199 Mg m3
Hall symbol: P 1Melting point: 392.4 K
a = 8.5417 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2807 (2) ÅCell parameters from 9917 reflections
c = 12.6400 (3) Åθ = 1.7–28.0°
α = 102.850 (1)°µ = 0.08 mm1
β = 90.091 (1)°T = 90 K
γ = 91.488 (1)°Prisms, white
V = 1081.78 (4) Å30.34 × 0.26 × 0.23 mm
Data collection top
Bruker SMART
diffractometer with APEX2 CCD detector
4784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ω scansh = 1110
25392 measured reflectionsk = 1313
5160 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.214P]
where P = (Fo2 + 2Fc2)/3
5160 reflections(Δ/σ)max < 0.001
509 parametersΔρmax = 0.46 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H21NOγ = 91.488 (1)°
Mr = 195.30V = 1081.78 (4) Å3
Triclinic, P1Z = 4
a = 8.5417 (2) ÅMo Kα radiation
b = 10.2807 (2) ŵ = 0.08 mm1
c = 12.6400 (3) ÅT = 90 K
α = 102.850 (1)°0.34 × 0.26 × 0.23 mm
β = 90.091 (1)°
Data collection top
Bruker SMART
diffractometer with APEX2 CCD detector
4784 reflections with I > 2σ(I)
25392 measured reflectionsRint = 0.035
5160 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
5160 reflectionsΔρmin = 0.21 e Å3
509 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Friedel pairs were merged as recommended for light atom structures in the checkCIF program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2813 (3)0.3685 (2)0.08818 (17)0.0169 (4)
H10.33720.30840.03030.020*
C20.2355 (3)0.2889 (2)0.17364 (18)0.0199 (4)
H2A0.16200.21760.14140.024*
H2B0.32820.24840.19530.024*
C30.1618 (3)0.3757 (2)0.27424 (18)0.0213 (5)
H3A0.06350.40920.25420.026*
H3B0.13980.32210.32700.026*
C40.2710 (3)0.4927 (2)0.32488 (18)0.0215 (5)
H4A0.36270.45940.35450.026*
H4B0.21780.55100.38410.026*
C50.3225 (3)0.5725 (2)0.24137 (17)0.0189 (4)
H5A0.39820.64110.27520.023*
H5B0.23230.61670.22050.023*
C60.3959 (3)0.4866 (2)0.13778 (16)0.0159 (4)
C70.4210 (3)0.5784 (2)0.05733 (17)0.0165 (4)
C90.5649 (3)0.4056 (2)0.08228 (18)0.0189 (4)
H9A0.60430.40630.15410.023*
H9B0.48540.33500.09010.023*
C100.6984 (3)0.3737 (2)0.01351 (19)0.0210 (4)
H10A0.76810.45140.00620.025*
H10B0.75760.30170.05650.025*
C110.6438 (3)0.3333 (2)0.08969 (19)0.0214 (4)
H11A0.73460.30830.12610.026*
H11B0.57560.25470.06930.026*
C120.5571 (3)0.4396 (2)0.17042 (18)0.0184 (4)
H12A0.62620.51780.18940.022*
H12B0.54170.40650.23590.022*
C130.1352 (3)0.4142 (2)0.0369 (2)0.0234 (5)
H13A0.06960.33790.00610.035*
H13B0.16640.45900.01900.035*
H13C0.07830.47420.09160.035*
C1A0.0229 (3)0.4909 (2)0.74816 (17)0.0182 (4)
H1A0.01410.42450.79280.022*
C2A0.1973 (3)0.5265 (2)0.74572 (18)0.0202 (4)
H2A10.21180.59690.70650.024*
H2A20.23460.56050.81950.024*
C3A0.2950 (3)0.4080 (2)0.69248 (19)0.0225 (5)
H3A10.40240.43790.68570.027*
H3A20.29470.34310.73760.027*
C4A0.2290 (3)0.3432 (2)0.58066 (19)0.0217 (4)
H4A10.28860.26500.54960.026*
H4A20.23970.40550.53340.026*
C5A0.0563 (3)0.3023 (2)0.58674 (18)0.0185 (4)
H5A10.04700.23660.63100.022*
H5A20.01880.26060.51440.022*
C6A0.0490 (3)0.4215 (2)0.63499 (17)0.0161 (4)
C7A0.0507 (3)0.5153 (2)0.55546 (17)0.0156 (4)
C9A0.2115 (3)0.3552 (2)0.40755 (18)0.0190 (4)
H9A10.13940.28220.39650.023*
H9A20.24720.36390.33660.023*
C10A0.3520 (3)0.3193 (2)0.47040 (18)0.0212 (4)
H10C0.41490.39760.49370.025*
H10D0.41620.25160.42280.025*
C11A0.3040 (3)0.2678 (2)0.56903 (19)0.0208 (4)
H11C0.23770.19180.54550.025*
H11D0.39720.23680.60080.025*
C12A0.2166 (3)0.3715 (2)0.65661 (18)0.0197 (4)
H12C0.21070.33500.72090.024*
H12D0.28160.44930.67470.024*
C13A0.0654 (3)0.6130 (2)0.81015 (18)0.0226 (5)
H13D0.02510.63940.88290.034*
H13E0.17490.59030.81210.034*
H13F0.05130.68530.77410.034*
C1B0.5341 (3)0.8408 (2)0.36794 (16)0.0178 (4)
H1B0.52900.90700.41280.021*
C2B0.7072 (3)0.8067 (2)0.36470 (18)0.0199 (4)
H2B10.71810.73660.32510.024*
H2B20.74280.77250.43820.024*
C3B0.8108 (3)0.9260 (2)0.31153 (19)0.0209 (4)
H3B10.81370.99080.35680.025*
H3B20.91680.89710.30440.025*
C4B0.7482 (3)0.9906 (2)0.19965 (18)0.0203 (4)
H4B10.81191.06930.16850.024*
H4B20.75540.92860.15230.024*
C5B0.5778 (3)1.0301 (2)0.20684 (17)0.0180 (4)
H5B10.57231.09550.25140.022*
H5B20.54231.07200.13470.022*
C6B0.4660 (3)0.9104 (2)0.25522 (17)0.0153 (4)
C7B0.4590 (3)0.8169 (2)0.17528 (16)0.0152 (4)
C9B0.3049 (3)0.9764 (2)0.02876 (18)0.0185 (4)
H9B10.38061.05020.01710.022*
H9B20.26770.96750.04180.022*
C10B0.1677 (3)1.0105 (2)0.09283 (19)0.0207 (4)
H10E0.10631.07770.04600.025*
H10F0.10110.93140.11660.025*
C11B0.2195 (3)1.0621 (2)0.19119 (18)0.0191 (4)
H11E0.29011.13850.16730.023*
H11F0.12841.09250.22370.023*
C12B0.3016 (3)0.9586 (2)0.27761 (18)0.0184 (4)
H12E0.30940.99450.34220.022*
H12F0.23250.88030.29550.022*
C13B0.4399 (3)0.7182 (2)0.43024 (18)0.0226 (5)
H13G0.48050.69090.50230.034*
H13H0.33190.74040.43400.034*
H13I0.44850.64660.39330.034*
C1C0.2016 (3)0.9626 (2)0.29179 (17)0.0170 (4)
H1C0.14351.02280.35060.020*
C2C0.2420 (3)1.0427 (2)0.20650 (17)0.0196 (4)
H2C10.31261.11290.23840.023*
H2C20.14701.08460.18640.023*
C3C0.3183 (3)0.9565 (2)0.10453 (18)0.0210 (4)
H3C10.41900.92190.12280.025*
H3C20.33611.01070.05210.025*
C4C0.2146 (3)0.8405 (2)0.05437 (18)0.0206 (4)
H4C10.12050.87490.02600.025*
H4C20.27000.78230.00570.025*
C5C0.1689 (3)0.7601 (2)0.13766 (17)0.0192 (4)
H5C10.09640.69220.10420.023*
H5C20.26180.71500.15730.023*
C6C0.0923 (3)0.8458 (2)0.24222 (16)0.0152 (4)
C7C0.0736 (3)0.7534 (2)0.32233 (17)0.0172 (4)
C9C0.0785 (3)0.9260 (2)0.46415 (18)0.0195 (4)
H9C10.11660.92500.53630.023*
H9C20.00330.99640.47130.023*
C10C0.2153 (3)0.9581 (2)0.39660 (19)0.0223 (5)
H10G0.27950.88010.37660.027*
H10H0.27931.02930.44050.027*
C11C0.1644 (3)1.0004 (2)0.29360 (19)0.0226 (5)
H11G0.10111.07880.31430.027*
H11H0.25721.02590.25810.027*
C12C0.0718 (3)0.8950 (2)0.21178 (18)0.0188 (4)
H12G0.13660.81730.19210.023*
H12H0.05860.92940.14690.023*
C13C0.3507 (3)0.9146 (2)0.3408 (2)0.0236 (5)
H13J0.41260.99000.37190.035*
H13K0.32260.86880.39620.035*
H13L0.41010.85490.28500.035*
N80.4924 (2)0.53304 (18)0.03820 (15)0.0186 (4)
H80.49590.58840.08020.022*
N8A0.1270 (2)0.47750 (18)0.45948 (15)0.0187 (4)
H8A0.12540.53750.42160.022*
N8B0.3840 (2)0.85451 (18)0.07988 (15)0.0180 (4)
H8B0.38260.79490.04170.022*
N8C0.0011 (2)0.79845 (18)0.41869 (15)0.0184 (4)
H8C0.00180.74280.46040.022*
O10.3740 (2)0.69436 (15)0.07917 (13)0.0225 (3)
O1A0.01941 (19)0.62531 (15)0.57620 (12)0.0188 (3)
O1B0.52257 (19)0.70723 (15)0.19575 (12)0.0182 (3)
O1C0.1266 (2)0.63695 (15)0.29949 (13)0.0222 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (10)0.0169 (10)0.0134 (10)0.0004 (8)0.0009 (8)0.0048 (8)
C20.0296 (12)0.0158 (10)0.0151 (10)0.0021 (8)0.0021 (9)0.0056 (8)
C30.0303 (12)0.0187 (10)0.0165 (10)0.0002 (9)0.0053 (9)0.0077 (8)
C40.0348 (13)0.0183 (10)0.0120 (10)0.0007 (9)0.0030 (9)0.0045 (8)
C50.0298 (12)0.0143 (9)0.0134 (10)0.0015 (8)0.0031 (8)0.0046 (8)
C60.0228 (11)0.0149 (9)0.0109 (9)0.0000 (8)0.0001 (8)0.0047 (8)
C70.0210 (11)0.0158 (9)0.0130 (10)0.0003 (8)0.0018 (8)0.0041 (8)
C90.0245 (11)0.0192 (10)0.0140 (10)0.0025 (8)0.0026 (8)0.0053 (8)
C100.0214 (11)0.0204 (11)0.0216 (11)0.0037 (8)0.0022 (9)0.0053 (9)
C110.0247 (11)0.0209 (11)0.0205 (11)0.0030 (9)0.0015 (9)0.0082 (9)
C120.0235 (11)0.0189 (10)0.0144 (10)0.0000 (8)0.0018 (8)0.0070 (8)
C130.0250 (12)0.0262 (11)0.0206 (11)0.0000 (9)0.0027 (9)0.0087 (9)
C1A0.0250 (11)0.0197 (10)0.0115 (9)0.0010 (8)0.0000 (8)0.0066 (8)
C2A0.0288 (12)0.0206 (10)0.0127 (9)0.0014 (9)0.0036 (8)0.0072 (8)
C3A0.0242 (11)0.0255 (11)0.0196 (11)0.0019 (9)0.0014 (9)0.0086 (9)
C4A0.0252 (11)0.0207 (10)0.0195 (11)0.0047 (8)0.0017 (9)0.0049 (8)
C5A0.0261 (12)0.0167 (10)0.0139 (10)0.0025 (8)0.0009 (8)0.0054 (8)
C6A0.0219 (11)0.0169 (9)0.0107 (9)0.0026 (8)0.0012 (8)0.0055 (7)
C7A0.0197 (10)0.0164 (9)0.0120 (9)0.0043 (8)0.0034 (8)0.0053 (7)
C9A0.0271 (11)0.0175 (10)0.0130 (10)0.0014 (8)0.0031 (8)0.0048 (8)
C10A0.0244 (11)0.0225 (11)0.0171 (10)0.0009 (9)0.0021 (9)0.0055 (8)
C11A0.0251 (12)0.0201 (10)0.0184 (11)0.0018 (8)0.0009 (9)0.0070 (8)
C12A0.0247 (11)0.0208 (10)0.0149 (10)0.0005 (9)0.0023 (8)0.0072 (8)
C13A0.0303 (12)0.0239 (11)0.0131 (10)0.0017 (9)0.0002 (9)0.0030 (8)
C1B0.0265 (11)0.0197 (10)0.0085 (9)0.0005 (8)0.0013 (8)0.0061 (8)
C2B0.0257 (11)0.0211 (10)0.0138 (10)0.0017 (9)0.0036 (8)0.0055 (8)
C3B0.0211 (11)0.0239 (11)0.0192 (11)0.0004 (9)0.0029 (8)0.0083 (9)
C4B0.0241 (11)0.0201 (10)0.0174 (10)0.0017 (8)0.0007 (9)0.0057 (8)
C5B0.0267 (11)0.0162 (10)0.0117 (9)0.0013 (8)0.0006 (8)0.0049 (8)
C6B0.0208 (10)0.0152 (9)0.0109 (9)0.0002 (8)0.0014 (8)0.0049 (7)
C7B0.0192 (10)0.0174 (9)0.0099 (9)0.0023 (8)0.0027 (7)0.0054 (7)
C9B0.0255 (11)0.0180 (10)0.0129 (10)0.0020 (8)0.0025 (8)0.0053 (8)
C10B0.0253 (12)0.0194 (10)0.0178 (10)0.0025 (9)0.0015 (9)0.0046 (8)
C11B0.0218 (11)0.0188 (10)0.0181 (10)0.0015 (8)0.0021 (8)0.0068 (8)
C12B0.0219 (11)0.0212 (11)0.0138 (10)0.0011 (8)0.0025 (8)0.0074 (8)
C13B0.0300 (12)0.0239 (11)0.0130 (10)0.0011 (9)0.0000 (9)0.0023 (8)
C1C0.0225 (11)0.0165 (10)0.0128 (10)0.0018 (8)0.0006 (8)0.0050 (8)
C2C0.0279 (12)0.0175 (10)0.0142 (10)0.0034 (8)0.0019 (8)0.0053 (8)
C3C0.0325 (12)0.0188 (10)0.0129 (10)0.0033 (9)0.0045 (8)0.0054 (8)
C4C0.0340 (12)0.0170 (10)0.0113 (9)0.0018 (9)0.0027 (9)0.0040 (8)
C5C0.0310 (12)0.0142 (9)0.0125 (10)0.0008 (8)0.0031 (8)0.0033 (7)
C6C0.0220 (10)0.0148 (9)0.0101 (9)0.0002 (8)0.0004 (8)0.0056 (8)
C7C0.0207 (11)0.0188 (10)0.0133 (10)0.0005 (8)0.0006 (8)0.0062 (8)
C9C0.0267 (12)0.0193 (10)0.0133 (10)0.0021 (8)0.0034 (8)0.0056 (8)
C10C0.0261 (12)0.0204 (11)0.0213 (11)0.0027 (9)0.0020 (9)0.0069 (9)
C11C0.0263 (12)0.0214 (11)0.0218 (11)0.0029 (9)0.0004 (9)0.0091 (9)
C12C0.0234 (11)0.0199 (10)0.0154 (10)0.0018 (8)0.0037 (8)0.0086 (8)
C13C0.0254 (12)0.0278 (12)0.0191 (11)0.0016 (9)0.0039 (9)0.0086 (9)
N80.0268 (10)0.0172 (8)0.0138 (8)0.0030 (7)0.0031 (7)0.0073 (7)
N8A0.0293 (10)0.0160 (8)0.0124 (8)0.0018 (7)0.0021 (7)0.0072 (7)
N8B0.0279 (10)0.0161 (8)0.0122 (8)0.0025 (7)0.0024 (7)0.0075 (7)
N8C0.0277 (10)0.0167 (8)0.0126 (8)0.0017 (7)0.0013 (7)0.0078 (7)
O10.0352 (9)0.0169 (7)0.0174 (8)0.0043 (7)0.0055 (7)0.0079 (6)
O1A0.0277 (8)0.0152 (7)0.0147 (7)0.0004 (6)0.0012 (6)0.0061 (6)
O1B0.0263 (8)0.0156 (7)0.0140 (7)0.0012 (6)0.0014 (6)0.0057 (6)
O1C0.0348 (9)0.0169 (7)0.0165 (8)0.0032 (6)0.0051 (7)0.0074 (6)
Geometric parameters (Å, º) top
C1—C131.537 (3)C1B—C6B1.565 (3)
C1—C21.539 (3)C1B—H1B0.9800
C1—C61.556 (3)C2B—C3B1.521 (3)
C1—H10.9800C2B—H2B10.9700
C2—C31.529 (3)C2B—H2B20.9700
C2—H2A0.9700C3B—C4B1.527 (3)
C2—H2B0.9700C3B—H3B10.9700
C3—C41.525 (3)C3B—H3B20.9700
C3—H3A0.9700C4B—C5B1.529 (3)
C3—H3B0.9700C4B—H4B10.9700
C4—C51.532 (3)C4B—H4B20.9700
C4—H4A0.9700C5B—C6B1.550 (3)
C4—H4B0.9700C5B—H5B10.9700
C5—C61.551 (3)C5B—H5B20.9700
C5—H5A0.9700C6B—C7B1.542 (3)
C5—H5B0.9700C6B—C12B1.548 (3)
C6—C71.545 (3)C7B—O1B1.239 (3)
C6—C121.556 (3)C7B—N8B1.350 (3)
C7—O11.240 (3)C9B—N8B1.460 (3)
C7—N81.347 (3)C9B—C10B1.515 (3)
C9—N81.459 (3)C9B—H9B10.9700
C9—C101.518 (3)C9B—H9B20.9700
C9—H9A0.9700C10B—C11B1.519 (3)
C9—H9B0.9700C10B—H10E0.9700
C10—C111.525 (3)C10B—H10F0.9700
C10—H10A0.9700C11B—C12B1.530 (3)
C10—H10B0.9700C11B—H11E0.9700
C11—C121.527 (3)C11B—H11F0.9700
C11—H11A0.9700C12B—H12E0.9700
C11—H11B0.9700C12B—H12F0.9700
C12—H12A0.9700C13B—H13G0.9600
C12—H12B0.9700C13B—H13H0.9600
C13—H13A0.9600C13B—H13I0.9600
C13—H13B0.9600C1C—C13C1.534 (3)
C13—H13C0.9600C1C—C2C1.539 (3)
C1A—C2A1.527 (3)C1C—C6C1.560 (3)
C1A—C13A1.540 (3)C1C—H1C0.9800
C1A—C6A1.566 (3)C2C—C3C1.526 (3)
C1A—H1A0.9800C2C—H2C10.9700
C2A—C3A1.524 (3)C2C—H2C20.9700
C2A—H2A10.9700C3C—C4C1.526 (3)
C2A—H2A20.9700C3C—H3C10.9700
C3A—C4A1.523 (3)C3C—H3C20.9700
C3A—H3A10.9700C4C—C5C1.532 (3)
C3A—H3A20.9700C4C—H4C10.9700
C4A—C5A1.531 (3)C4C—H4C20.9700
C4A—H4A10.9700C5C—C6C1.549 (3)
C4A—H4A20.9700C5C—H5C10.9700
C5A—C6A1.552 (3)C5C—H5C20.9700
C5A—H5A10.9700C6C—C7C1.545 (3)
C5A—H5A20.9700C6C—C12C1.555 (3)
C6A—C7A1.540 (3)C7C—O1C1.241 (3)
C6A—C12A1.554 (3)C7C—N8C1.347 (3)
C7A—O1A1.241 (3)C9C—N8C1.459 (3)
C7A—N8A1.350 (3)C9C—C10C1.520 (3)
C9A—N8A1.454 (3)C9C—H9C10.9700
C9A—C10A1.523 (3)C9C—H9C20.9700
C9A—H9A10.9700C10C—C11C1.527 (3)
C9A—H9A20.9700C10C—H10G0.9700
C10A—C11A1.518 (3)C10C—H10H0.9700
C10A—H10C0.9700C11C—C12C1.524 (3)
C10A—H10D0.9700C11C—H11G0.9700
C11A—C12A1.533 (3)C11C—H11H0.9700
C11A—H11C0.9700C12C—H12G0.9700
C11A—H11D0.9700C12C—H12H0.9700
C12A—H12C0.9700C13C—H13J0.9600
C12A—H12D0.9700C13C—H13K0.9600
C13A—H13D0.9600C13C—H13L0.9600
C13A—H13E0.9600N8—H80.8600
C13A—H13F0.9600N8A—H8A0.8600
C1B—C2B1.531 (3)N8B—H8B0.8600
C1B—C13B1.537 (3)N8C—H8C0.8600
C13—C1—C2110.99 (19)C3B—C2B—C1B112.89 (18)
C13—C1—C6112.59 (17)C3B—C2B—H2B1109.0
C2—C1—C6110.66 (17)C1B—C2B—H2B1109.0
C13—C1—H1107.4C3B—C2B—H2B2109.0
C2—C1—H1107.4C1B—C2B—H2B2109.0
C6—C1—H1107.4H2B1—C2B—H2B2107.8
C3—C2—C1112.60 (17)C2B—C3B—C4B110.34 (18)
C3—C2—H2A109.1C2B—C3B—H3B1109.6
C1—C2—H2A109.1C4B—C3B—H3B1109.6
C3—C2—H2B109.1C2B—C3B—H3B2109.6
C1—C2—H2B109.1C4B—C3B—H3B2109.6
H2A—C2—H2B107.8H3B1—C3B—H3B2108.1
C4—C3—C2110.84 (19)C3B—C4B—C5B111.08 (18)
C4—C3—H3A109.5C3B—C4B—H4B1109.4
C2—C3—H3A109.5C5B—C4B—H4B1109.4
C4—C3—H3B109.5C3B—C4B—H4B2109.4
C2—C3—H3B109.5C5B—C4B—H4B2109.4
H3A—C3—H3B108.1H4B1—C4B—H4B2108.0
C3—C4—C5111.46 (18)C4B—C5B—C6B113.30 (18)
C3—C4—H4A109.3C4B—C5B—H5B1108.9
C5—C4—H4A109.3C6B—C5B—H5B1108.9
C3—C4—H4B109.3C4B—C5B—H5B2108.9
C5—C4—H4B109.3C6B—C5B—H5B2108.9
H4A—C4—H4B108.0H5B1—C5B—H5B2107.7
C4—C5—C6113.92 (17)C7B—C6B—C12B111.70 (17)
C4—C5—H5A108.8C7B—C6B—C5B108.14 (16)
C6—C5—H5A108.8C12B—C6B—C5B110.97 (17)
C4—C5—H5B108.8C7B—C6B—C1B112.38 (17)
C6—C5—H5B108.8C12B—C6B—C1B106.61 (17)
H5A—C5—H5B107.7C5B—C6B—C1B106.96 (17)
C7—C6—C5106.96 (17)O1B—C7B—N8B118.46 (18)
C7—C6—C1110.23 (16)O1B—C7B—C6B121.51 (18)
C5—C6—C1109.32 (17)N8B—C7B—C6B120.03 (18)
C7—C6—C12109.54 (17)N8B—C9B—C10B114.80 (18)
C5—C6—C12107.66 (17)N8B—C9B—H9B1108.6
C1—C6—C12112.92 (16)C10B—C9B—H9B1108.6
O1—C7—N8119.01 (19)N8B—C9B—H9B2108.6
O1—C7—C6120.49 (19)C10B—C9B—H9B2108.6
N8—C7—C6120.49 (18)H9B1—C9B—H9B2107.5
N8—C9—C10114.21 (19)C9B—C10B—C11B112.40 (19)
N8—C9—H9A108.7C9B—C10B—H10E109.1
C10—C9—H9A108.7C11B—C10B—H10E109.1
N8—C9—H9B108.7C9B—C10B—H10F109.1
C10—C9—H9B108.7C11B—C10B—H10F109.1
H9A—C9—H9B107.6H10E—C10B—H10F107.9
C9—C10—C11113.44 (19)C10B—C11B—C12B113.93 (18)
C9—C10—H10A108.9C10B—C11B—H11E108.8
C11—C10—H10A108.9C12B—C11B—H11E108.8
C9—C10—H10B108.9C10B—C11B—H11F108.8
C11—C10—H10B108.9C12B—C11B—H11F108.8
H10A—C10—H10B107.7H11E—C11B—H11F107.7
C10—C11—C12115.62 (18)C11B—C12B—C6B120.43 (19)
C10—C11—H11A108.4C11B—C12B—H12E107.2
C12—C11—H11A108.4C6B—C12B—H12E107.2
C10—C11—H11B108.4C11B—C12B—H12F107.2
C12—C11—H11B108.4C6B—C12B—H12F107.2
H11A—C11—H11B107.4H12E—C12B—H12F106.9
C11—C12—C6119.42 (18)C1B—C13B—H13G109.5
C11—C12—H12A107.5C1B—C13B—H13H109.5
C6—C12—H12A107.5H13G—C13B—H13H109.5
C11—C12—H12B107.5C1B—C13B—H13I109.5
C6—C12—H12B107.5H13G—C13B—H13I109.5
H12A—C12—H12B107.0H13H—C13B—H13I109.5
C1—C13—H13A109.5C13C—C1C—C2C110.98 (19)
C1—C13—H13B109.5C13C—C1C—C6C112.58 (17)
H13A—C13—H13B109.5C2C—C1C—C6C110.45 (17)
C1—C13—H13C109.5C13C—C1C—H1C107.5
H13A—C13—H13C109.5C2C—C1C—H1C107.5
H13B—C13—H13C109.5C6C—C1C—H1C107.5
C2A—C1A—C13A109.58 (18)C3C—C2C—C1C112.85 (18)
C2A—C1A—C6A114.28 (17)C3C—C2C—H2C1109.0
C13A—C1A—C6A115.17 (18)C1C—C2C—H2C1109.0
C2A—C1A—H1A105.6C3C—C2C—H2C2109.0
C13A—C1A—H1A105.6C1C—C2C—H2C2109.0
C6A—C1A—H1A105.6H2C1—C2C—H2C2107.8
C3A—C2A—C1A112.93 (19)C4C—C3C—C2C110.91 (19)
C3A—C2A—H2A1109.0C4C—C3C—H3C1109.5
C1A—C2A—H2A1109.0C2C—C3C—H3C1109.5
C3A—C2A—H2A2109.0C4C—C3C—H3C2109.5
C1A—C2A—H2A2109.0C2C—C3C—H3C2109.5
H2A1—C2A—H2A2107.8H3C1—C3C—H3C2108.0
C4A—C3A—C2A110.37 (19)C3C—C4C—C5C111.50 (18)
C4A—C3A—H3A1109.6C3C—C4C—H4C1109.3
C2A—C3A—H3A1109.6C5C—C4C—H4C1109.3
C4A—C3A—H3A2109.6C3C—C4C—H4C2109.3
C2A—C3A—H3A2109.6C5C—C4C—H4C2109.3
H3A1—C3A—H3A2108.1H4C1—C4C—H4C2108.0
C3A—C4A—C5A111.31 (19)C4C—C5C—C6C113.84 (17)
C3A—C4A—H4A1109.4C4C—C5C—H5C1108.8
C5A—C4A—H4A1109.4C6C—C5C—H5C1108.8
C3A—C4A—H4A2109.4C4C—C5C—H5C2108.8
C5A—C4A—H4A2109.4C6C—C5C—H5C2108.8
H4A1—C4A—H4A2108.0H5C1—C5C—H5C2107.7
C4A—C5A—C6A113.14 (18)C7C—C6C—C5C106.96 (17)
C4A—C5A—H5A1109.0C7C—C6C—C12C109.73 (18)
C6A—C5A—H5A1109.0C5C—C6C—C12C107.82 (17)
C4A—C5A—H5A2109.0C7C—C6C—C1C109.88 (16)
C6A—C5A—H5A2109.0C5C—C6C—C1C109.36 (18)
H5A1—C5A—H5A2107.8C12C—C6C—C1C112.90 (16)
C7A—C6A—C5A108.18 (16)O1C—C7C—N8C118.87 (19)
C7A—C6A—C12A111.81 (18)O1C—C7C—C6C120.59 (19)
C5A—C6A—C12A110.80 (17)N8C—C7C—C6C120.53 (18)
C7A—C6A—C1A112.39 (17)N8C—C9C—C10C113.87 (18)
C5A—C6A—C1A106.92 (17)N8C—C9C—H9C1108.8
C12A—C6A—C1A106.65 (17)C10C—C9C—H9C1108.8
O1A—C7A—N8A118.28 (19)N8C—C9C—H9C2108.8
O1A—C7A—C6A121.6 (2)C10C—C9C—H9C2108.8
N8A—C7A—C6A120.09 (19)H9C1—C9C—H9C2107.7
N8A—C9A—C10A114.84 (18)C9C—C10C—C11C113.3 (2)
N8A—C9A—H9A1108.6C9C—C10C—H10G108.9
C10A—C9A—H9A1108.6C11C—C10C—H10G108.9
N8A—C9A—H9A2108.6C9C—C10C—H10H108.9
C10A—C9A—H9A2108.6C11C—C10C—H10H108.9
H9A1—C9A—H9A2107.5H10G—C10C—H10H107.7
C11A—C10A—C9A112.36 (19)C12C—C11C—C10C115.43 (19)
C11A—C10A—H10C109.1C12C—C11C—H11G108.4
C9A—C10A—H10C109.1C10C—C11C—H11G108.4
C11A—C10A—H10D109.1C12C—C11C—H11H108.4
C9A—C10A—H10D109.1C10C—C11C—H11H108.4
H10C—C10A—H10D107.9H11G—C11C—H11H107.5
C10A—C11A—C12A114.16 (19)C11C—C12C—C6C119.95 (18)
C10A—C11A—H11C108.7C11C—C12C—H12G107.3
C12A—C11A—H11C108.7C6C—C12C—H12G107.3
C10A—C11A—H11D108.7C11C—C12C—H12H107.3
C12A—C11A—H11D108.7C6C—C12C—H12H107.3
H11C—C11A—H11D107.6H12G—C12C—H12H106.9
C11A—C12A—C6A120.26 (18)C1C—C13C—H13J109.5
C11A—C12A—H12C107.3C1C—C13C—H13K109.5
C6A—C12A—H12C107.3H13J—C13C—H13K109.5
C11A—C12A—H12D107.3C1C—C13C—H13L109.5
C6A—C12A—H12D107.3H13J—C13C—H13L109.5
H12C—C12A—H12D106.9H13K—C13C—H13L109.5
C1A—C13A—H13D109.5C7—N8—C9130.71 (18)
C1A—C13A—H13E109.5C7—N8—H8114.6
H13D—C13A—H13E109.5C9—N8—H8114.6
C1A—C13A—H13F109.5C7A—N8A—C9A132.58 (18)
H13D—C13A—H13F109.5C7A—N8A—H8A113.7
H13E—C13A—H13F109.5C9A—N8A—H8A113.7
C2B—C1B—C13B109.51 (18)C7B—N8B—C9B132.66 (18)
C2B—C1B—C6B114.23 (17)C7B—N8B—H8B113.7
C13B—C1B—C6B115.45 (18)C9B—N8B—H8B113.7
C2B—C1B—H1B105.6C7C—N8C—C9C130.77 (18)
C13B—C1B—H1B105.6C7C—N8C—H8C114.6
C6B—C1B—H1B105.6C9C—N8C—H8C114.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1B0.862.112.967 (2)173
N8B—H8B···O10.862.032.868 (2)166
N8A—H8A···O1C0.862.032.872 (2)165
N8C—H8C···O1A0.862.102.959 (2)172

Experimental details

Crystal data
Chemical formulaC12H21NO
Mr195.30
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.5417 (2), 10.2807 (2), 12.6400 (3)
α, β, γ (°)102.850 (1), 90.091 (1), 91.488 (1)
V3)1081.78 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.26 × 0.23
Data collection
DiffractometerBruker SMART
diffractometer with APEX2 CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25392, 5160, 4784
Rint0.035
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.02
No. of reflections5160
No. of parameters509
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.21

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1B0.862.112.967 (2)172.9
N8B—H8B···O10.862.032.868 (2)165.8
N8A—H8A···O1C0.862.032.872 (2)165.0
N8C—H8C···O1A0.862.102.959 (2)171.9
 

Acknowledgements

We thank Tania Groutso for help with the data collection.

References

First citationBrimble, M. A., Crimmins, D. & Trzoss, M. (2005). ARKIVOC, (i), 39–52.  Google Scholar
First citationBrimble, M. A. & Trzoss, M. (2004). Tetrahedron, 60, 5613–5622.  Web of Science CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCiminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Grauso, L., Tartaglione, L., Guerrini, F. & Pistocchi, R. (2007). J. Nat. Prod. 70, 1878–1883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, T. M., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod. 64, 308–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacKinnon, S. L., Walter, J. A., Quilliam, M. A., Cembella, A. D., Leblanc, P., Burton, I. W., Hardstaff, W. R. & Lewis, N. I. (2006). J. Nat. Prod. 69, 983–987.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchultz, A. G., Macielag, M., Padmanabhan, S., Taveras, A. G. & Welch, M. (1988). J. Am. Chem. Soc. 110, 7828–7841.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchultz, A. G. & Pettus, L. (1997). Tetrahedron Lett. 38, 5433–5436.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds