organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-N-(1-Hy­droxy­methyl-2-methyl­prop­yl)-2-meth­oxy­benzamide

aKey Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: jingbolan@scu.edu.cn

(Received 8 March 2008; accepted 13 April 2008; online 10 May 2008)

The title compound, C13H19NO3, is an important synthetic inter­mediate. Weak O—H⋯O and N—H⋯O hydrogen bonds enhance the stability of the crystal structure.

Related literature

For related literature, see: Ma & You (2007[Ma, K. & You, J. (2007). Chem. Eur. J. 13, 1863-1871.]); Rechavi & Lemaire (2002[Rechavi, D. & Lemaire, M. (2002). Chem. Rev. 102, 3467-3494.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO3

  • Mr = 237.29

  • Orthorhombic, P 21 21 21

  • a = 9.015 (4) Å

  • b = 10.386 (4) Å

  • c = 14.005 (4) Å

  • V = 1311.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.50 × 0.44 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1457 measured reflections

  • 1397 independent reflections

  • 848 reflections with I > 2σ(I)

  • Rint = 0.010

  • 3 standard reflections every 120 reflections intensity decay: 0.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.02

  • 1397 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 2.00 2.806 (4) 170
N1—H1N1⋯O1 0.86 1.96 2.656 (4) 137
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxazoline ligands have been proved to be a class of chiral ligands, being capable of forming a broad variety of metal complexes that are capable of catalyzing a great number of reactions with excellent enantioselectivity (Rechavi & Lemaire, 2002). It is believed that the oxazoline ring can be modified structurally by replacing the O atom with a substituted N atom, leading to new types of imidazoline ligands (Ma & You, 2007). However, all those ligands can prepared by this compound as an intermediate. Herein, we report the synthesis and structure of the title compound (I).

As shown in Fig. 1, there is a chiral center at C9 derived from L-valinol. The C—N bond lengths are 1.318 (4) Å and 1.463 (4) Å, and the C8—N1—C9 angle is 125.3 (3) °. A combination of O—H···O and N—H···O hydrogen bonds interactions provide packing forces in the crystal structure of the title compound.

Related literature top

For related literature, see: Ma & You (2007); Rechavi & Lemaire (2002).

Experimental top

NaH (8.7 g, 60%, 0.216 mol) was added portionwise to a stirred solution of L-valinol (22.1 g, 0.215 mol) in dry THF (120 ml). The mixture was stirred at ambient temperature for 1 h. To this solution was added 2-Methoxy-benzoic acid methyl ester (17.8 g, 0.107 mol) dissolved in THF (50 ml). The mixture was refluxed for 12 h under nitrogen, quenched with H2O (10 ml) and concentrated by evaporation of the solvent. The residue was dissolved in CH2Cl2 (100 ml), washed with H2O, brine, and dried over MgSO4. And then removal of the solvent in vacuo gave a white solid, which was recrystallized from ethyl acetate and petroleum ether to afford the title compound as white crystals (22.8 g, 90%).

Refinement top

H atoms were positioned geometrically and refined in the riding model approximation with O—H = 0.82 Å, N—H = 0.86 Å, and C—H = 0.93, 0.96, 0.97 or 0.98 Å. The Uiso(H) = 1.5 Ueq(C) for the CH3 while it was set to 1.2 Ueq(C,N,O) for all other H atoms. Due to abscence of significant anomalous dispersion effects, the reflection data were merged.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
(S)-N-(1-Hydroxymethyl-2-methylpropyl)-2-methoxybenzamide top
Crystal data top
C13H19NO3F(000) = 512
Mr = 237.29Dx = 1.202 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.015 (4) Åθ = 4.5–6.7°
b = 10.386 (4) ŵ = 0.09 mm1
c = 14.005 (4) ÅT = 291 K
V = 1311.3 (9) Å3Block, colourless
Z = 40.50 × 0.44 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.4°
Graphite monochromatorh = 310
ω/2θ scansk = 312
1457 measured reflectionsl = 516
1397 independent reflections3 standard reflections every 120 reflections
848 reflections with I > 2σ(I) intensity decay: 0.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.0096P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1397 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (8)
Crystal data top
C13H19NO3V = 1311.3 (9) Å3
Mr = 237.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.015 (4) ŵ = 0.09 mm1
b = 10.386 (4) ÅT = 291 K
c = 14.005 (4) Å0.50 × 0.44 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
1457 measured reflections3 standard reflections every 120 reflections
1397 independent reflections intensity decay: 0.4%
848 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
1397 reflectionsΔρmin = 0.14 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1432 (3)0.3872 (3)0.16126 (19)0.0666 (8)
O20.5192 (3)0.3286 (3)0.00264 (18)0.0703 (8)
O30.2632 (4)0.0046 (3)0.0111 (2)0.0810 (10)
H30.19450.05620.01400.097*
N10.3536 (3)0.2340 (2)0.0926 (2)0.0487 (8)
H1N10.27110.24330.12270.058*
C10.1842 (4)0.4786 (3)0.0963 (3)0.0514 (9)
C20.1074 (5)0.5935 (4)0.0851 (3)0.0709 (12)
H20.02400.60990.12230.085*
C30.1535 (6)0.6826 (4)0.0201 (4)0.0878 (16)
H3A0.10090.75910.01330.105*
C40.2760 (6)0.6610 (4)0.0355 (4)0.0929 (18)
H40.30780.72260.07910.112*
C50.3519 (5)0.5457 (4)0.0255 (3)0.0745 (13)
H50.43370.53000.06420.089*
C60.3096 (4)0.4533 (3)0.0402 (3)0.0489 (9)
C70.0018 (6)0.3961 (7)0.2048 (3)0.109 (2)
H7A0.00380.47390.24160.163*
H7B0.01300.32330.24600.163*
H7C0.07350.39700.15640.163*
C80.4020 (4)0.3328 (3)0.0425 (2)0.0459 (9)
C90.4288 (4)0.1097 (3)0.1012 (2)0.0456 (8)
H90.50500.10600.05140.055*
C100.3202 (5)0.0025 (3)0.0824 (3)0.0609 (10)
H10A0.36910.07940.09320.073*
H10B0.23870.00910.12730.073*
C110.5075 (5)0.0978 (4)0.1981 (3)0.0632 (11)
H110.55150.01150.20020.076*
C120.6339 (6)0.1925 (5)0.2074 (4)0.0939 (16)
H12A0.59570.27870.20450.141*
H12B0.70310.17940.15620.141*
H12C0.68320.17960.26740.141*
C130.4068 (6)0.1084 (6)0.2833 (3)0.107 (2)
H13A0.46300.09460.34060.160*
H13B0.32990.04470.27880.160*
H13C0.36310.19260.28490.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0560 (16)0.0735 (18)0.0704 (16)0.0177 (16)0.0102 (13)0.0020 (15)
O20.0553 (16)0.0652 (18)0.0903 (18)0.0022 (15)0.0249 (16)0.0137 (16)
O30.072 (2)0.071 (2)0.099 (2)0.0007 (16)0.0180 (18)0.0113 (17)
N10.0369 (15)0.0481 (16)0.0610 (17)0.0057 (15)0.0078 (14)0.0039 (14)
C10.050 (2)0.046 (2)0.058 (2)0.0001 (18)0.0117 (19)0.0054 (18)
C20.064 (3)0.060 (3)0.089 (3)0.015 (2)0.016 (2)0.019 (2)
C30.070 (3)0.048 (2)0.146 (4)0.002 (2)0.043 (3)0.008 (3)
C40.067 (3)0.059 (3)0.152 (5)0.011 (3)0.030 (3)0.047 (3)
C50.053 (2)0.066 (2)0.104 (3)0.010 (2)0.011 (2)0.031 (3)
C60.044 (2)0.0442 (18)0.059 (2)0.0051 (17)0.0149 (17)0.0013 (17)
C70.077 (3)0.156 (6)0.094 (3)0.036 (4)0.030 (3)0.020 (4)
C80.037 (2)0.046 (2)0.054 (2)0.0041 (17)0.0023 (16)0.0044 (18)
C90.0387 (18)0.0447 (19)0.0534 (19)0.0069 (17)0.0040 (15)0.0004 (17)
C100.053 (2)0.050 (2)0.080 (3)0.0044 (19)0.000 (2)0.004 (2)
C110.062 (3)0.061 (3)0.067 (2)0.016 (2)0.009 (2)0.011 (2)
C120.096 (3)0.093 (3)0.093 (3)0.000 (3)0.037 (3)0.011 (3)
C130.120 (4)0.146 (5)0.054 (2)0.031 (5)0.004 (3)0.016 (3)
Geometric parameters (Å, º) top
O1—C11.365 (4)C6—C81.504 (5)
O1—C71.416 (5)C7—H7A0.9600
O2—C81.232 (4)C7—H7B0.9600
O3—C101.406 (5)C7—H7C0.9600
O3—H30.8200C9—C101.506 (5)
N1—C81.318 (4)C9—C111.537 (5)
N1—C91.463 (4)C9—H90.9800
N1—H1N10.8600C10—H10A0.9700
C1—C21.389 (5)C10—H10B0.9700
C1—C61.402 (5)C11—C131.503 (6)
C2—C31.363 (6)C11—C121.511 (6)
C2—H20.9300C11—H110.9800
C3—C41.369 (7)C12—H12A0.9600
C3—H3A0.9300C12—H12B0.9600
C4—C51.386 (6)C12—H12C0.9600
C4—H40.9300C13—H13A0.9600
C5—C61.383 (5)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C1—O1—C7119.1 (4)N1—C8—C6118.4 (3)
C10—O3—H3109.5N1—C9—C10109.7 (3)
C8—N1—C9125.3 (3)N1—C9—C11111.0 (3)
C8—N1—H1N1117.4C10—C9—C11113.3 (3)
C9—N1—H1N1117.4N1—C9—H9107.5
O1—C1—C2122.5 (4)C10—C9—H9107.5
O1—C1—C6117.5 (3)C11—C9—H9107.5
C2—C1—C6120.0 (4)O3—C10—C9112.9 (3)
C3—C2—C1120.4 (4)O3—C10—H10A109.0
C3—C2—H2119.8C9—C10—H10A109.0
C1—C2—H2119.8O3—C10—H10B109.0
C2—C3—C4121.0 (4)C9—C10—H10B109.0
C2—C3—H3A119.5H10A—C10—H10B107.8
C4—C3—H3A119.5C13—C11—C12109.8 (4)
C3—C4—C5118.8 (4)C13—C11—C9114.6 (3)
C3—C4—H4120.6C12—C11—C9111.8 (3)
C5—C4—H4120.6C13—C11—H11106.7
C6—C5—C4122.0 (5)C12—C11—H11106.7
C6—C5—H5119.0C9—C11—H11106.7
C4—C5—H5119.0C11—C12—H12A109.5
C5—C6—C1117.7 (4)C11—C12—H12B109.5
C5—C6—C8116.0 (3)H12A—C12—H12B109.5
C1—C6—C8126.2 (3)C11—C12—H12C109.5
O1—C7—H7A109.5H12A—C12—H12C109.5
O1—C7—H7B109.5H12B—C12—H12C109.5
H7A—C7—H7B109.5C11—C13—H13A109.5
O1—C7—H7C109.5C11—C13—H13B109.5
H7A—C7—H7C109.5H13A—C13—H13B109.5
H7B—C7—H7C109.5C11—C13—H13C109.5
O2—C8—N1122.0 (3)H13A—C13—H13C109.5
O2—C8—C6119.6 (3)H13B—C13—H13C109.5
C7—O1—C1—C213.4 (5)C9—N1—C8—C6179.2 (3)
C7—O1—C1—C6167.0 (4)C5—C6—C8—O29.9 (5)
O1—C1—C2—C3179.3 (3)C1—C6—C8—O2171.7 (3)
C6—C1—C2—C30.3 (6)C5—C6—C8—N1169.6 (3)
C1—C2—C3—C40.0 (6)C1—C6—C8—N18.8 (5)
C2—C3—C4—C50.9 (7)C8—N1—C9—C10130.9 (4)
C3—C4—C5—C61.5 (7)C8—N1—C9—C11103.2 (4)
C4—C5—C6—C11.2 (6)N1—C9—C10—O363.2 (4)
C4—C5—C6—C8179.7 (4)C11—C9—C10—O3172.2 (3)
O1—C1—C6—C5179.8 (3)N1—C9—C11—C1359.7 (4)
C2—C1—C6—C50.2 (5)C10—C9—C11—C1364.2 (5)
O1—C1—C6—C81.8 (5)N1—C9—C11—C1266.1 (4)
C2—C1—C6—C8178.6 (3)C10—C9—C11—C12170.0 (3)
C9—N1—C8—O20.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.002.806 (4)170
N1—H1N1···O10.861.962.656 (4)137
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H19NO3
Mr237.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)9.015 (4), 10.386 (4), 14.005 (4)
V3)1311.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.44 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1457, 1397, 848
Rint0.010
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.02
No. of reflections1397
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.002.806 (4)169.7
N1—H1N1···O10.861.962.656 (4)136.7
Symmetry code: (i) x1/2, y+1/2, z.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.  Google Scholar
First citationMa, K. & You, J. (2007). Chem. Eur. J. 13, 1863–1871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRechavi, D. & Lemaire, M. (2002). Chem. Rev. 102, 3467–3494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds