organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(Di­methyl­amino)phen­yl]-1-(2-pyrrol­yl)prop-2-en-1-one

aDepartment of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: sptang88@163.com

(Received 1 March 2008; accepted 15 May 2008; online 21 May 2008)

The molecule of the title compound, C15H16N2O, is non-planar with a dihedral angle of 16.0 (1)° between the pyrrole and benzene rings. The ketone double-bond displays an s–cis conformation with an O=C—C=C torsion angle of 7.9 (3) and an intramolecular C—H⋯O hydrogen bond. In the crystal structure, adjacent mol­ecules are paired through N—H⋯O hydrogen bonds into centrosymmetric dimers.

Related literature

For the pharmaceutical and biological activities of chalcones, see: Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]); Lunardi et al. (2003[Lunardi, F., Guzela, M., Rodrigues, A. T., Corrêa, R., Eger-Mangrich, I., Steindel, M., Grisard, E. C., Assreuy, J., Calixto, J. B. & Santos, A. R. S. (2003). Antimicrob. Agents Chemother. 47, 1449-1451.]); Modzelewska et al. (2006[Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.]); Opletalova (2000[Opletalova, V. (2000). Ceska Slov. Farm. 49, 278-284.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]); Sogawa et al. (1994[Sogawa, S., Nihro, Y., Ueda, H., Miki, T., Matsumoto, H. & Satoh, T. (1994). Biol. Pharm. Bull. 17, 251-256.]). For the use of chalcones as photonic materials, see: Balaji et al. (2003[Balaji, R., Grande, D. & Nanjundan, S. (2003). React. Funct. Polym. 56, 45-57.]); Indira et al. (2002[Indira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O

  • Mr = 240.30

  • Monoclinic, P 21 /c

  • a = 11.0864 (16) Å

  • b = 12.0412 (17) Å

  • c = 10.6169 (16) Å

  • β = 112.294 (2)°

  • V = 1311.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.991

  • 6889 measured reflections

  • 2568 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.159

  • S = 1.09

  • 2568 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.01 2.832 (2) 161
C7—H7⋯O1 0.93 2.44 2.797 (3) 103
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones and their analogues are of considerable interest because they possess broad pharmaceutical (Sogawa et al., 1994) and biological activities (Opletalova & Sedivy, 1999), such as anticancer (Modzelewska et al., 2006), antitubercular (Lin et al., 2002), trypanocidal (Lunardi et al., 2003), antifungal and antibacterial properties (Opletalova, 2000). Moreover, some substituted chalcones have also been studied as negative photoresist materials (Balaji et al., 2003) and non-linear optical materials (Indira et al., 2002). We report here a new chalcone compound, (I), Fig. 1.

The title compound reveals an s-cis conformation for the O1–C5–C6–C7 [torsion angle 7.9 (3)°] ketone motif. Differently to most substituted chalcones, compound (I) is nonplanar with a dihedral angle between the pyrrole ring and benzene ring of 16.0 (1)°. In the crystal packing, the –NH groups are involved as donors to form centrosymmetric dimers through N—H···O hydrogen bonding interactions as shown in Fig. 2.

Related literature top

For the pharmaceutical and biological activities of chalcones, see: Lin et al. (2002); Lunardi et al. (2003); Modzelewska et al. (2006); Opletalova (2000); Opletalova & Sedivy (1999); Sogawa et al. (1994). For chalcones as photo materials, see: Balaji et al. (2003); Indira et al. (2002).

Experimental top

To a solution of 2-acetylpyrrole (1.09 g, 10.0 mmol) and 4-dimethylaminobenzaldehyde (1.49 g, 10.0 mmol) in 15 ml e thanol was added a solution of sodium hydroxide (0.40 g, 10.0 mmol) in 5 ml water at room temperature. After stirring 10 h, the solution was filtered. The resulting orange precipitate was washed with water and iced ethanol, and further recrystallized from acetone to afford orange block crystals of the title compound. Yield: 0.92 g (38.3%).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and ethylene; 0.96 Å, Uiso= 1.2Ueq (C) for CH3 atoms, and d(N—H) = 0.86 Å, Uiso=1.2Ueq (N) for pyrrole nitrogen atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme, with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial packing diagram of the title structure showing the N—H···O hydrogen bonding interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-[4-(Dimethylamino)phenyl]-1-(2-pyrrolyl)prop-2-en-1-one top
Crystal data top
C15H16N2OF(000) = 512
Mr = 240.30Dx = 1.217 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1115 reflections
a = 11.0864 (16) Åθ = 2.6–23.4°
b = 12.0412 (17) ŵ = 0.08 mm1
c = 10.6169 (16) ÅT = 293 K
β = 112.294 (2)°Block, orange
V = 1311.3 (3) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2568 independent reflections
Radiation source: fine-focus sealed tube1654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.985, Tmax = 0.991k = 149
6889 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.0839P]
where P = (Fo2 + 2Fc2)/3
2568 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H16N2OV = 1311.3 (3) Å3
Mr = 240.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0864 (16) ŵ = 0.08 mm1
b = 12.0412 (17) ÅT = 293 K
c = 10.6169 (16) Å0.20 × 0.18 × 0.17 mm
β = 112.294 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
2568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1654 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.991Rint = 0.040
6889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.09Δρmax = 0.13 e Å3
2568 reflectionsΔρmin = 0.15 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39484 (17)0.01511 (13)0.82369 (16)0.0848 (6)
N10.53628 (17)0.17431 (15)1.00559 (18)0.0683 (6)
H1A0.54180.11001.04270.082*
N20.1228 (2)0.10473 (18)0.0104 (2)0.0821 (6)
C10.4663 (2)0.19776 (18)0.8722 (2)0.0583 (6)
C20.4841 (2)0.30924 (19)0.8553 (3)0.0726 (7)
H20.44800.34880.77440.087*
C30.5650 (2)0.3521 (2)0.9796 (3)0.0831 (8)
H30.59330.42520.99770.100*
C40.5953 (3)0.2667 (2)1.0701 (3)0.0823 (8)
H40.64830.27161.16190.099*
C50.3924 (2)0.11169 (19)0.7811 (2)0.0621 (6)
C60.3125 (2)0.14088 (19)0.6406 (2)0.0628 (6)
H60.32050.21110.60820.075*
C70.2285 (2)0.06891 (18)0.5581 (2)0.0642 (6)
H70.22570.00000.59650.077*
C80.1409 (2)0.08166 (17)0.4178 (2)0.0581 (6)
C90.0498 (3)0.00039 (19)0.3551 (3)0.0776 (7)
H90.04790.06320.40520.093*
C100.0371 (2)0.0067 (2)0.2234 (2)0.0768 (7)
H100.09600.05090.18680.092*
C110.0389 (2)0.09835 (19)0.1430 (2)0.0623 (6)
C120.0526 (2)0.18180 (18)0.2049 (2)0.0666 (6)
H120.05470.24480.15500.080*
C130.1389 (2)0.17297 (17)0.3365 (2)0.0635 (6)
H130.19840.23000.37330.076*
C140.2165 (3)0.0175 (2)0.0521 (3)0.0945 (9)
H14A0.17160.05170.04540.142*
H14B0.26420.03500.14620.142*
H14C0.27590.01150.00610.142*
C150.1296 (3)0.2014 (3)0.0725 (3)0.1092 (10)
H15A0.18630.25560.05750.164*
H15B0.16300.18040.16670.164*
H15C0.04400.23250.04820.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1096 (14)0.0608 (11)0.0631 (11)0.0019 (9)0.0093 (9)0.0103 (8)
N10.0763 (13)0.0619 (12)0.0593 (12)0.0020 (10)0.0172 (10)0.0020 (9)
N20.0801 (14)0.0857 (15)0.0640 (14)0.0035 (11)0.0088 (11)0.0010 (11)
C10.0588 (12)0.0576 (14)0.0562 (13)0.0046 (10)0.0192 (11)0.0052 (11)
C20.0758 (15)0.0639 (16)0.0775 (18)0.0004 (12)0.0285 (14)0.0081 (12)
C30.0896 (18)0.0669 (16)0.093 (2)0.0156 (14)0.0349 (16)0.0078 (16)
C40.0858 (18)0.0832 (19)0.0690 (17)0.0157 (15)0.0194 (14)0.0152 (15)
C50.0649 (14)0.0598 (14)0.0585 (14)0.0063 (11)0.0199 (11)0.0057 (11)
C60.0656 (13)0.0544 (13)0.0620 (14)0.0034 (11)0.0170 (12)0.0068 (11)
C70.0714 (14)0.0535 (13)0.0654 (15)0.0062 (11)0.0233 (13)0.0068 (11)
C80.0620 (13)0.0502 (13)0.0600 (14)0.0041 (10)0.0207 (11)0.0024 (10)
C90.0934 (18)0.0617 (15)0.0680 (17)0.0140 (13)0.0195 (14)0.0066 (12)
C100.0816 (17)0.0723 (17)0.0676 (17)0.0216 (13)0.0182 (14)0.0045 (13)
C110.0607 (13)0.0655 (15)0.0574 (14)0.0096 (11)0.0188 (11)0.0016 (11)
C120.0732 (15)0.0580 (14)0.0633 (15)0.0044 (12)0.0199 (13)0.0104 (11)
C130.0623 (13)0.0550 (14)0.0662 (15)0.0023 (10)0.0164 (12)0.0014 (11)
C140.0762 (17)0.115 (2)0.0791 (19)0.0055 (16)0.0143 (15)0.0205 (16)
C150.116 (2)0.114 (2)0.0713 (19)0.0082 (19)0.0052 (17)0.0173 (17)
Geometric parameters (Å, º) top
O1—C51.244 (2)C7—H70.9300
N1—C41.339 (3)C8—C91.388 (3)
N1—C11.361 (3)C8—C131.392 (3)
N1—H1A0.8600C9—C101.367 (3)
N2—C111.364 (3)C9—H90.9300
N2—C151.443 (3)C10—C111.391 (3)
N2—C141.449 (3)C10—H100.9300
C1—C21.379 (3)C11—C121.402 (3)
C1—C51.442 (3)C12—C131.366 (3)
C2—C31.383 (3)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—C41.360 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.460 (3)C15—H15A0.9600
C6—C71.329 (3)C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C81.446 (3)
C4—N1—C1109.6 (2)C13—C8—C7124.7 (2)
C4—N1—H1A125.2C10—C9—C8123.2 (2)
C1—N1—H1A125.2C10—C9—H9118.4
C11—N2—C15122.1 (2)C8—C9—H9118.4
C11—N2—C14121.4 (2)C9—C10—C11121.1 (2)
C15—N2—C14116.3 (2)C9—C10—H10119.4
N1—C1—C2106.5 (2)C11—C10—H10119.4
N1—C1—C5120.2 (2)N2—C11—C10121.6 (2)
C2—C1—C5133.3 (2)N2—C11—C12122.2 (2)
C1—C2—C3108.2 (2)C10—C11—C12116.3 (2)
C1—C2—H2125.9C13—C12—C11121.7 (2)
C3—C2—H2125.9C13—C12—H12119.2
C4—C3—C2106.8 (2)C11—C12—H12119.2
C4—C3—H3126.6C12—C13—C8122.4 (2)
C2—C3—H3126.6C12—C13—H13118.8
N1—C4—C3109.0 (2)C8—C13—H13118.8
N1—C4—H4125.5N2—C14—H14A109.5
C3—C4—H4125.5N2—C14—H14B109.5
O1—C5—C1119.9 (2)H14A—C14—H14B109.5
O1—C5—C6121.2 (2)N2—C14—H14C109.5
C1—C5—C6118.9 (2)H14A—C14—H14C109.5
C7—C6—C5121.2 (2)H14B—C14—H14C109.5
C7—C6—H6119.4N2—C15—H15A109.5
C5—C6—H6119.4N2—C15—H15B109.5
C6—C7—C8129.7 (2)H15A—C15—H15B109.5
C6—C7—H7115.2N2—C15—H15C109.5
C8—C7—H7115.2H15A—C15—H15C109.5
C9—C8—C13115.3 (2)H15B—C15—H15C109.5
C9—C8—C7120.0 (2)
C4—N1—C1—C20.2 (3)C6—C7—C8—C137.1 (4)
C4—N1—C1—C5179.3 (2)C13—C8—C9—C100.4 (4)
N1—C1—C2—C30.1 (3)C7—C8—C9—C10179.2 (2)
C5—C1—C2—C3179.4 (2)C8—C9—C10—C110.1 (4)
C1—C2—C3—C40.0 (3)C15—N2—C11—C10177.3 (3)
C1—N1—C4—C30.2 (3)C14—N2—C11—C101.7 (3)
C2—C3—C4—N10.1 (3)C15—N2—C11—C124.6 (4)
N1—C1—C5—O11.6 (3)C14—N2—C11—C12179.8 (2)
C2—C1—C5—O1179.0 (2)C9—C10—C11—N2178.2 (2)
N1—C1—C5—C6176.55 (19)C9—C10—C11—C120.0 (4)
C2—C1—C5—C62.9 (4)N2—C11—C12—C13178.0 (2)
O1—C5—C6—C77.9 (3)C10—C11—C12—C130.2 (3)
C1—C5—C6—C7170.3 (2)C11—C12—C13—C80.5 (4)
C5—C6—C7—C8179.5 (2)C9—C8—C13—C120.6 (3)
C6—C7—C8—C9172.4 (2)C7—C8—C13—C12179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.012.832 (2)161
C7—H7···O10.932.442.797 (3)103
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H16N2O
Mr240.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0864 (16), 12.0412 (17), 10.6169 (16)
β (°) 112.294 (2)
V3)1311.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6889, 2568, 1654
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.159, 1.09
No. of reflections2568
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.012.832 (2)161.0
C7—H7···O10.932.442.797 (3)103.0
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors thank Hengyang Normal University for supporting this study.

References

First citationBalaji, R., Grande, D. & Nanjundan, S. (2003). React. Funct. Polym. 56, 45–57.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIndira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLunardi, F., Guzela, M., Rodrigues, A. T., Corrêa, R., Eger-Mangrich, I., Steindel, M., Grisard, E. C., Assreuy, J., Calixto, J. B. & Santos, A. R. S. (2003). Antimicrob. Agents Chemother. 47, 1449–1451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationModzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalova, V. (2000). Ceska Slov. Farm. 49, 278–284.  PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSogawa, S., Nihro, Y., Ueda, H., Miki, T., Matsumoto, H. & Satoh, T. (1994). Biol. Pharm. Bull. 17, 251–256.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds