organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-9,10-Bis(bromo­meth­yl)-1,4,5,8-tetra­oxadeca­lin

aDepartment of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
*Correspondence e-mail: djones@uncc.edu, metzkorn@uncc.edu

(Received 29 December 2007; accepted 21 May 2008; online 30 May 2008)

The title compound, C8H12Br2O4, is a bicyclic ketal in which the two six-membered rings are cis to one another and assume a double-chair conformation. A crystallographic twofold axis bisects the molecule.

Related literature

A determination of this structure has been previously attempted (Fuchs et al., 1972[Fuchs, B., Goldberg, I. & Shmueli, U. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 357-365.]), but the authors did not publish or deposit any atomic coordinates. The same paper gives detailed information for a related structure which has H atoms in place of the bromo­methyl groups of the title compound. A search of the Cambridge Structural Database [Version 5.29; (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.])] did not yield any other closely related structures. See also: Fuchs (1970[Fuchs, B. (1970). Tetrahedron Lett. 20, 1747-1750.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12Br2O4

  • Mr = 332

  • Orthorhombic, P n c a

  • a = 8.5314 (14) Å

  • b = 9.5295 (7) Å

  • c = 13.1348 (13) Å

  • V = 1067.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.57 mm−1

  • T = 295 (2) K

  • 0.5 × 0.3 × 0.15 mm

Data collection
  • Enra–Nonius CAD4 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.039, Tmax = 0.486 (expected range = 0.019–0.238)

  • 4584 measured reflections

  • 968 independent reflections

  • 915 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 67 reflections intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.10

  • 968 reflections

  • 65 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: DIRDIF (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 program system. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a bicyclic ketal in which the two six-membered rings are cis to one another and assume a doublechair conformation. A crystallographic twofold axis relates one of the fused rings to the other.

A determination of this structure has been previously attempted (Fuchs et al., 1972), but the authors did not publish or deposit any atomic coordinates. They halted their study after three cycles of isotropic refinement because "···the accuracy of the atomic parameters was relatively low." They did present the Fourier map resulting from the isotropic refinement, and it shows an overall structure in agreement with that presented here. The space group and unit-cell parameters which they obtained are also in agreement with those of the present study.

The authors of this prior study attributed the "relatively low" accuracy of their atomic parameters to the domination of the scattering by the Br atoms. Our present study suggests that the importance of absorption corrections probably played a part as well.

The same paper (Fuchs et al., 1972) gives detailed structural information for a related compound which has hydrogen atoms in place of the bromomethyl groups of the title compound. That structure is similar to the one reported here, in that the two six-membered rings are cis to one another and assume a doublechair conformation.

Related literature top

A determination of this structure has been previously attempted (Fuchs et al., 1972), but the authors did not publish or deposit any atomic coordinates. The same paper gives detailed information for a related structure which has H atoms in place of the bromomethyl groups of the title compound. A search of the Cambridge Structural Database [Version 5.29; (Allen, 2002); CONQUEST (Bruno et al., 2002)] did not yield any other closely related structures. See also: Fuchs (1970).

Experimental top

The title compound 3 has been described as the major reaction product in the acid-catalyzed reaction of diketone 1 with ethylene glycol (Fuchs, 1970). Since the dispiro derivative 2 was needed for one of our projects, literature procedures (Fuchs et al., 1972) were followed to yield a product mixture from which only the bicyclic title compound 3 could be isolated, as colorless crystals. The NMR data obtained for 3 deviated from the published data (Fuchs, 1970), and the X-ray structure was therefore determined to ultimately confirm the formation of 3.

1H NMR (CDCl3, 500 MHz): δ = 4.14 (mc, 4H), 3.75 (mc, 4H), 3.69 (s, 4H) p.p.m..

13C NMR (CDCl3, 125.7 MHz): δ = 92.3, 61.1, 31.6 p.p.m..

Refinement top

All H atoms were constrained using a riding model. C — H bond lengths were fixed at 0.97 Å, with Uiso(H) = 1.2 Ueq. (C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: DIRDIF (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound, 3, with 50% probability displacement ellipsoids. [Symmetry code: (') -x + 1/2, -y + 1, z.]
[Figure 2] Fig. 2. Schematic representations of compounds 1–4.
cis-9,10-Bis(bromomethyl)-1,4,5,8-tetraoxadecalin top
Crystal data top
C8H12Br2O4F(000) = 648
Mr = 332Dx = 2.065 Mg m3
Orthorhombic, PncaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2a 2nCell parameters from 23 reflections
a = 8.5314 (14) Åθ = 9.7–23.5°
b = 9.5295 (7) ŵ = 9.57 mm1
c = 13.1348 (13) ÅT = 295 K
V = 1067.9 (2) Å3Irregular, colorless
Z = 40.5 × 0.3 × 0.15 mm
Data collection top
Enra–Nonius CAD4
diffractometer
915 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 67.6°, θmin = 5.7°
Non–profiled ω/2θ scansh = 1010
Absorption correction: multi-scan
(Blessing, 1995)
k = 110
Tmin = 0.039, Tmax = 0.486l = 1515
4584 measured reflections3 standard reflections every 67 reflections
968 independent reflections intensity decay: 3%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0428P)2 + 0.7055P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.101Δρmax = 0.45 e Å3
S = 1.10Δρmin = 0.43 e Å3
968 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
65 parametersExtinction coefficient: 0.0045 (3)
0 restraints
Crystal data top
C8H12Br2O4V = 1067.9 (2) Å3
Mr = 332Z = 4
Orthorhombic, PncaCu Kα radiation
a = 8.5314 (14) ŵ = 9.57 mm1
b = 9.5295 (7) ÅT = 295 K
c = 13.1348 (13) Å0.5 × 0.3 × 0.15 mm
Data collection top
Enra–Nonius CAD4
diffractometer
915 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.063
Tmin = 0.039, Tmax = 0.4863 standard reflections every 67 reflections
4584 measured reflections intensity decay: 3%
968 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.10Δρmax = 0.45 e Å3
968 reflectionsΔρmin = 0.43 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.12607 (5)0.16873 (4)0.02778 (4)0.0766 (3)
O20.0390 (2)0.4700 (2)0.13501 (17)0.0603 (6)
O10.2328 (3)0.3492 (2)0.21071 (17)0.0605 (6)
C40.2152 (4)0.3552 (3)0.0252 (2)0.0588 (8)
H4A0.32560.34830.00830.071*
H4B0.16440.40920.0280.071*
C30.0090 (4)0.5542 (4)0.2241 (3)0.0672 (9)
H3A0.03540.50120.28480.081*
H3B0.10150.57790.22730.081*
C10.1982 (3)0.4327 (3)0.1255 (2)0.0545 (7)
C20.3958 (4)0.3150 (4)0.2203 (3)0.0680 (10)
H2A0.42840.25830.16280.082*
H2B0.41250.26090.28190.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0951 (5)0.0623 (4)0.0725 (4)0.00632 (17)0.00192 (18)0.00707 (17)
O20.0530 (11)0.0674 (14)0.0606 (12)0.0026 (10)0.0035 (10)0.0047 (11)
O10.0656 (13)0.0620 (13)0.0539 (12)0.0008 (10)0.0008 (11)0.0060 (10)
C40.0597 (18)0.0570 (18)0.060 (2)0.0007 (14)0.0019 (14)0.0019 (14)
C30.0648 (19)0.073 (2)0.064 (2)0.0056 (16)0.0107 (17)0.0070 (17)
C10.0510 (15)0.0600 (19)0.0525 (17)0.0049 (13)0.0015 (13)0.0006 (13)
C20.072 (2)0.069 (2)0.063 (2)0.0096 (16)0.0108 (17)0.0074 (17)
Geometric parameters (Å, º) top
Br—C41.933 (3)C4—H4B0.97
O2—C11.409 (4)C3—C2i1.489 (5)
O2—C31.442 (4)C3—H3A0.97
O1—C11.404 (4)C3—H3B0.97
O1—C21.434 (4)C1—C1i1.558 (6)
C4—C11.518 (4)C2—H2A0.97
C4—H4A0.97C2—H2B0.97
C1—O2—C3112.5 (2)H3A—C3—H3B108.2
C1—O1—C2113.7 (3)O1—C1—O2105.9 (2)
C1—C4—Br113.2 (2)O1—C1—C4113.3 (3)
C1—C4—H4A108.9O2—C1—C4107.0 (3)
Br—C4—H4A108.9O1—C1—C1i110.3 (2)
C1—C4—H4B108.9O2—C1—C1i109.8 (3)
Br—C4—H4B108.9C4—C1—C1i110.3 (2)
H4A—C4—H4B107.7O1—C2—C3i110.0 (3)
O2—C3—C2i110.0 (3)O1—C2—H2A109.7
O2—C3—H3A109.7C3i—C2—H2A109.7
C2i—C3—H3A109.7O1—C2—H2B109.7
O2—C3—H3B109.7C3i—C2—H2B109.7
C2i—C3—H3B109.7H2A—C2—H2B108.2
Symmetry code: (i) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H12Br2O4
Mr332
Crystal system, space groupOrthorhombic, Pnca
Temperature (K)295
a, b, c (Å)8.5314 (14), 9.5295 (7), 13.1348 (13)
V3)1067.9 (2)
Z4
Radiation typeCu Kα
µ (mm1)9.57
Crystal size (mm)0.5 × 0.3 × 0.15
Data collection
DiffractometerEnra–Nonius CAD4
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.039, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
4584, 968, 915
Rint0.063
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.10
No. of reflections968
No. of parameters65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.43

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), DIRDIF (Beurskens et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported in part by funds provided by the University of North Carolina at Charlotte.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 program system. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFuchs, B. (1970). Tetrahedron Lett. 20, 1747–1750.  CrossRef Google Scholar
First citationFuchs, B., Goldberg, I. & Shmueli, U. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 357–365.  CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds