organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Bis(4-nitro­phen­yl)-1,1′-(p-phenyl­ene)di­thio­urea di­methyl sulfoxide disolvate

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 5 April 2008; accepted 13 May 2008; online 17 May 2008)

The asymmetric unit of the title compound, C22H16N6O6S2·2C2H6OS, consists of one half-mol­ecule of the centrosymmetric thiourea derivative and one molecule of dimethyl sulfoxide (DMSO). The carbonyl group forms an intra­molecular hydrogen bond with the NH group, creating a six-membered (C—N—C—N—H⋯O) ring. Two other N—H⋯O hydro­gen bonds link one mol­ecule of the thio­urea to two mol­ecules of DMSO.

Related literature

For related literature, see: Burrows et al. (1997[Burrows, A. D., Menzer, S. & Michael, D. (1997). J. Chem. Soc. Dalton Trans. pp. 4237-4240.]); Dong et al. (2006[Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459-o3460.], 2007[Dong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G. L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279-280.]); Foss et al. (2004[Foss, O., Husebye, S. & Törnroos, K. (2004). Polyhedron, 23, 3021-3032.]); Valdés-Martínez et al. (2000[Valdés-Martínez, J., Hernández-Ortega, S., Ackerman, L. J., Li, D. T., Swearingen, J. K. & West, D. X. (2000). J. Mol. Struct. 524, 51-59.], 2004[Valdés-Martínez, J., Hernández-Ortega, S., Rubio, M., Li, D. T., Swearingen, J. K., Kaminsky, W., Kelman D. R. & West, D. X. (2004). J. Chem. Crystallogr. 34, 533-540. ]); Zhang et al. (2006[Zhang, Y.-M., Xu, W.-X. & Zhou, Y.-Q. (2006). Acta Chim. Sinica, 64, 79-84.]); Huang et al. (2006[Huang, J., Song, J.-R. & Ren, Y.-H. (2006). Chin. J. Struct. Chem. 25, 168-172.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N6O6S2·2C2H6OS

  • Mr = 680.78

  • Monoclinic, P 21 /c

  • a = 11.6949 (18) Å

  • b = 6.6916 (11) Å

  • c = 20.449 (2) Å

  • β = 106.353 (2)°

  • V = 1535.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 (2) K

  • 0.33 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.961

  • 7318 measured reflections

  • 2684 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.199

  • S = 0.96

  • 2684 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.09 2.942 (5) 169
N2—H2⋯O1 0.86 1.84 2.579 (5) 143

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea and its derivatives are of interest to us because of their varied biological activity as well as their ability to form strong H bonds as both donors and acceptors (Valdés-Martínez, et al., 2000; Jesus, et al., 2004, Burrows et al., 1997), and their tendency to coordinate with metal ions (Huang, et al., 2006; Foss, et al., 2004). In recent years, thioureas have been recognized as important neutral receptors because of their anion recognition properties (Zhang, et al., 2006) and for their ability to easily form intramolecular hydrogen bonds such as between the benzoyl (CO) and the N—H group of acylthioureas (Dong et al., 2006). In continuation of our previous studies on the synthesis and structural characterization of N-benzoyl-N'-(3-pyridyl)thiourea (II) (Dong, et al., 2006) and N,N'-(1,6-hexamethylene)-bis(benzoylthiourea) (Dong, et al., 2007), a novel bisbenzoylthiourea which crystallized as a dimethyl sulfoxide disolvate (I) has now been synthesized and structurally characterized.

The crystal structure of (I) is built up by one N, N'-(p-phenyl)-bis(p-nitro)benzoylthiourea molecule and two dimethyl sulfoxide solvent molecules. The carbonyl group of the thiourea forms an intramolecular hydrogen bond with the N—H group to form a six-membered (C/N/C/N/H/O) ring. The C=O bond length at 1.225 (5)Å is longer than the average C=O bond length (1.200 Å). This is most likely due to the intramolecular hydrogen bonding which is similar to the situation found in the structure of (II) (Dong, et al., 2006).

There are also N—H···O hydrogen bonds between N1 of the thiourea and the O atoms of the DMSO S=O groups which, together with other intermolecular C—H···O and C—H···S interactions, stabilize the three-dimensional structure of (I).

Related literature top

For related literature, see: Burrows et al. (1997); Dong et al. (2006, 2007); Foss et al. (2004); Valdés-Martínez et al. (2000, 2004); Zhang et al. (2006); Huang et al. (2006).

Experimental top

(p-Nitro)benzoyl chloride (1.86 g, 10 mmol) was reacted with ammonium thiocyanate (1.14 g, 15 mmol) in CH2Cl2 (25 ml) solution under solid-liquid phase transfer catalysis, using polyethylene glycol-400 (0.18 g) as the catalyst, to give the corresponding (p-nitro)benzoyl isothiocyanate under stirring at the room temperature. This was followed by slow addition of 15 ml CH2Cl2 solution dissolved p-phenylenediamine (1.60 g, 0.01 mmol). The corresponding yellow compound precipitated immediately. The product was filtered, washed with water and CH2Cl2, dried, and recrystallized from THF to give the titled thiourea. Yield, 72.6%. m. p. 243 - 244 °C. Anal. Calc. for C22H16N6O6S2 (%): C, 50.38; H, 3.07; N, 16.02. Found: C, 50.27; H, 3.15; N, 15.99. Selected IR data (cm-1 , KBr pellet): 3341, 3191 (ν NH), 1675 (ν C=O), 1152 (ν C=S). 1H NMR (400 MHz, DMSO-d6, δ, p.p.m.): 8.05 (d, J = 17.2 Hz, 4H, ArH), 8.19 (d, J = 8.2 Hz, 4H, ArH), 8.34 (dd, J = 17.2, 7.2 Hz, 4H, ArH), 11.98 (s, 2H, NH), 12.42 (s, 2H, NH).

A DMSO solution of the thiourea was placed in a hexane atmosphere, after about one week, along with diffusion of hexane into the DMSO solution, yellow needle-shaped single crystals suitable for X-ray crystallographic analysis were obtained.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96(CH2), or 0.93Å (CH),O—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecule structure of (I) with the atom numbering. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
3,3'-Bis(4-nitrophenyl)-1,1'-(p-phenylene)dithiourea dimethyl sulfoxide disolvate top
Crystal data top
C22H16N6O6S2·2C2H6OSF(000) = 708
Mr = 680.78Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6949 (18) ÅCell parameters from 1517 reflections
b = 6.6916 (11) Åθ = 3.3–25.3°
c = 20.449 (2) ŵ = 0.37 mm1
β = 106.353 (2)°T = 298 K
V = 1535.5 (4) Å3Needle-shaped, yellow
Z = 20.33 × 0.17 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.888, Tmax = 0.961k = 77
7318 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1071P)2]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C22H16N6O6S2·2C2H6OSV = 1535.5 (4) Å3
Mr = 680.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.6949 (18) ŵ = 0.37 mm1
b = 6.6916 (11) ÅT = 298 K
c = 20.449 (2) Å0.33 × 0.17 × 0.11 mm
β = 106.353 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2684 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1547 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.961Rint = 0.097
7318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 0.97Δρmax = 0.44 e Å3
2684 reflectionsΔρmin = 0.43 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7828 (3)0.3522 (5)0.51603 (16)0.0505 (8)
H10.76730.27240.54540.061*
N20.8719 (3)0.6436 (5)0.49516 (16)0.0507 (9)
H20.83430.61090.45410.061*
N30.4791 (3)0.4240 (5)0.36972 (18)0.0565 (9)
O10.7411 (3)0.4141 (5)0.40259 (14)0.0614 (8)
O20.4552 (3)0.4678 (5)0.31005 (16)0.0733 (10)
O30.4566 (3)0.5286 (5)0.41241 (17)0.0776 (10)
O40.7382 (3)0.1230 (6)0.62917 (14)0.0782 (10)
S10.91836 (14)0.5258 (2)0.62543 (6)0.0858 (6)
S20.82807 (12)0.0691 (2)0.69426 (6)0.0711 (5)
C10.8572 (4)0.5173 (6)0.5429 (2)0.0502 (10)
C20.9391 (3)0.8218 (6)0.5010 (2)0.0454 (10)
C30.9492 (4)0.9013 (7)0.4410 (2)0.0557 (11)
H30.91410.83440.40040.067*
C41.0090 (4)1.0755 (7)0.4389 (2)0.0562 (11)
H41.01501.12510.39750.067*
C50.7326 (3)0.3047 (6)0.44901 (19)0.0455 (10)
C60.6642 (3)0.1137 (6)0.43250 (18)0.0443 (9)
C70.6443 (4)0.0164 (6)0.4804 (2)0.0501 (10)
H70.67230.01410.52650.060*
C80.5824 (4)0.1933 (7)0.4596 (2)0.0548 (11)
H80.56740.28100.49150.066*
C90.5441 (3)0.2359 (6)0.39199 (19)0.0461 (10)
C100.5631 (4)0.1108 (7)0.3439 (2)0.0600 (12)
H100.53630.14380.29790.072*
C110.6225 (4)0.0652 (7)0.3643 (2)0.0592 (12)
H110.63490.15310.33180.071*
C120.8181 (5)0.2507 (9)0.7540 (2)0.0870 (17)
H12A0.84480.37690.74140.131*
H12B0.86710.21240.79830.131*
H12C0.73680.26240.75500.131*
C130.7650 (6)0.1309 (11)0.7298 (3)0.120 (2)
H13A0.69280.08660.73880.180*
H13B0.82060.17360.77160.180*
H13C0.74770.24050.69830.180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.050 (2)0.046 (2)0.0538 (19)0.0108 (17)0.0109 (15)0.0002 (17)
N20.0460 (19)0.047 (2)0.0551 (19)0.0107 (16)0.0077 (15)0.0008 (17)
N30.064 (2)0.048 (2)0.055 (2)0.0041 (18)0.0123 (18)0.0011 (18)
O10.0683 (19)0.057 (2)0.0569 (17)0.0188 (15)0.0140 (14)0.0064 (15)
O20.094 (2)0.065 (2)0.0564 (19)0.0207 (18)0.0137 (17)0.0127 (16)
O30.100 (3)0.064 (2)0.064 (2)0.0294 (19)0.0153 (18)0.0067 (17)
O40.090 (2)0.090 (3)0.0495 (18)0.021 (2)0.0117 (16)0.0026 (17)
S10.1133 (12)0.0803 (10)0.0544 (8)0.0440 (9)0.0080 (7)0.0012 (6)
S20.0732 (9)0.0804 (10)0.0590 (7)0.0026 (7)0.0174 (6)0.0010 (6)
C10.043 (2)0.048 (3)0.059 (3)0.0024 (19)0.0118 (19)0.002 (2)
C20.035 (2)0.040 (2)0.060 (2)0.0015 (17)0.0101 (17)0.0030 (19)
C30.059 (3)0.049 (3)0.054 (2)0.009 (2)0.0082 (19)0.007 (2)
C40.064 (3)0.055 (3)0.050 (2)0.011 (2)0.016 (2)0.002 (2)
C50.035 (2)0.048 (3)0.050 (2)0.0030 (18)0.0056 (17)0.001 (2)
C60.040 (2)0.047 (2)0.046 (2)0.0016 (18)0.0121 (17)0.0012 (18)
C70.051 (2)0.053 (3)0.042 (2)0.006 (2)0.0060 (18)0.0026 (19)
C80.062 (3)0.052 (3)0.053 (2)0.008 (2)0.021 (2)0.004 (2)
C90.046 (2)0.042 (2)0.047 (2)0.0039 (18)0.0067 (17)0.0017 (19)
C100.073 (3)0.061 (3)0.042 (2)0.018 (2)0.011 (2)0.001 (2)
C110.073 (3)0.060 (3)0.046 (2)0.023 (2)0.017 (2)0.008 (2)
C120.101 (4)0.097 (4)0.059 (3)0.013 (3)0.016 (3)0.001 (3)
C130.158 (6)0.091 (5)0.100 (4)0.022 (5)0.020 (4)0.024 (4)
Geometric parameters (Å, º) top
N1—C51.368 (4)C4—H40.9300
N1—C11.418 (5)C5—C61.495 (6)
N1—H10.8600C6—C71.379 (6)
N2—C11.338 (5)C6—C111.380 (5)
N2—C21.414 (5)C7—C81.390 (6)
N2—H20.8600C7—H70.9300
N3—O31.204 (4)C8—C91.358 (5)
N3—O21.209 (4)C8—H80.9300
N3—C91.475 (5)C9—C101.356 (6)
O1—C51.225 (5)C10—C111.371 (6)
O4—S21.490 (3)C10—H100.9300
S1—C11.638 (4)C11—H110.9300
S2—C121.750 (5)C12—H12A0.9600
S2—C131.779 (6)C12—H12B0.9600
C2—C31.372 (5)C12—H12C0.9600
C2—C4i1.389 (5)C13—H13A0.9600
C3—C41.367 (6)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C2i1.389 (5)
C5—N1—C1127.8 (3)C11—C6—C5116.4 (3)
C5—N1—H1116.1C6—C7—C8119.9 (4)
C1—N1—H1116.1C6—C7—H7120.1
C1—N2—C2130.8 (3)C8—C7—H7120.1
C1—N2—H2114.6C9—C8—C7119.0 (4)
C2—N2—H2114.6C9—C8—H8120.5
O3—N3—O2123.7 (4)C7—C8—H8120.5
O3—N3—C9118.1 (3)C10—C9—C8122.3 (4)
O2—N3—C9118.1 (4)C10—C9—N3118.6 (3)
O4—S2—C12106.6 (2)C8—C9—N3119.2 (4)
O4—S2—C13106.1 (2)C9—C10—C11118.8 (4)
C12—S2—C1396.9 (3)C9—C10—H10120.6
N2—C1—N1113.6 (3)C11—C10—H10120.6
N2—C1—S1128.4 (3)C10—C11—C6121.0 (4)
N1—C1—S1117.9 (3)C10—C11—H11119.5
C3—C2—C4i118.2 (4)C6—C11—H11119.5
C3—C2—N2115.9 (4)S2—C12—H12A109.5
C4i—C2—N2125.8 (4)S2—C12—H12B109.5
C4—C3—C2122.1 (4)H12A—C12—H12B109.5
C4—C3—H3118.9S2—C12—H12C109.5
C2—C3—H3118.9H12A—C12—H12C109.5
C3—C4—C2i119.6 (4)H12B—C12—H12C109.5
C3—C4—H4120.2S2—C13—H13A109.5
C2i—C4—H4120.2S2—C13—H13B109.5
O1—C5—N1122.2 (4)H13A—C13—H13B109.5
O1—C5—C6119.4 (3)S2—C13—H13C109.5
N1—C5—C6118.4 (4)H13A—C13—H13C109.5
C7—C6—C11119.1 (4)H13B—C13—H13C109.5
C7—C6—C5124.5 (3)
C2—N2—C1—N1179.4 (4)C11—C6—C7—C80.3 (6)
C2—N2—C1—S12.6 (7)C5—C6—C7—C8178.1 (4)
C5—N1—C1—N24.2 (6)C6—C7—C8—C91.0 (6)
C5—N1—C1—S1173.0 (3)C7—C8—C9—C100.7 (7)
C1—N2—C2—C3170.9 (4)C7—C8—C9—N3179.6 (4)
C1—N2—C2—C4i11.5 (7)O3—N3—C9—C10175.8 (4)
C4i—C2—C3—C40.6 (7)O2—N3—C9—C106.8 (6)
N2—C2—C3—C4178.4 (4)O3—N3—C9—C84.0 (6)
C2—C3—C4—C2i0.6 (7)O2—N3—C9—C8173.4 (4)
C1—N1—C5—O15.3 (6)C8—C9—C10—C110.3 (7)
C1—N1—C5—C6175.5 (4)N3—C9—C10—C11179.4 (4)
O1—C5—C6—C7177.0 (4)C9—C10—C11—C61.1 (7)
N1—C5—C6—C72.3 (6)C7—C6—C11—C100.7 (7)
O1—C5—C6—C115.2 (6)C5—C6—C11—C10177.2 (4)
N1—C5—C6—C11175.6 (4)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.092.942 (5)169
N2—H2···O10.861.842.579 (5)143

Experimental details

Crystal data
Chemical formulaC22H16N6O6S2·2C2H6OS
Mr680.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.6949 (18), 6.6916 (11), 20.449 (2)
β (°) 106.353 (2)
V3)1535.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.33 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7318, 2684, 1547
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.199, 0.97
No. of reflections2684
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.43

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.8602.0922.942 (5)169.39
N2—H2···O10.8601.8392.579 (5)143.06
 

Acknowledgements

We gratefully acknowledge support of this work by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A).

References

First citationBurrows, A. D., Menzer, S. & Michael, D. (1997). J. Chem. Soc. Dalton Trans. pp. 4237–4240.  CSD CrossRef Web of Science Google Scholar
First citationDong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G. L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279–280.  CAS Google Scholar
First citationFoss, O., Husebye, S. & Törnroos, K. (2004). Polyhedron, 23, 3021–3032.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, J., Song, J.-R. & Ren, Y.-H. (2006). Chin. J. Struct. Chem. 25, 168–172.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationValdés-Martínez, J., Hernández-Ortega, S., Ackerman, L. J., Li, D. T., Swearingen, J. K. & West, D. X. (2000). J. Mol. Struct. 524, 51–59.  Google Scholar
First citationValdés-Martínez, J., Hernández-Ortega, S., Rubio, M., Li, D. T., Swearingen, J. K., Kaminsky, W., Kelman D. R. & West, D. X. (2004). J. Chem. Crystallogr. 34, 533–540.  Google Scholar
First citationZhang, Y.-M., Xu, W.-X. & Zhou, Y.-Q. (2006). Acta Chim. Sinica, 64, 79–84.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds