organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6,7-Tetra­methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 11 April 2008; accepted 18 May 2008; online 24 May 2008)

In the title compound, C18H18O2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the planar benzofuran fragment. The phenyl ring is nearly perpendicular to the benzofuran system [88.56 (7)°] and is tilted slightly towards it. Molecules form pseudo-helices along the a axis. The crystal structure is stabilized by a C—H⋯π inter­action between a methyl H atom and the phenyl ring of the phenyl­sulfinyl substituent, and by intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For details of the pharmacological properties of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Ward (1997[Ward, R. S. (1997). Nat. Prod. Rep. 14, 43-74.]). For the structures of other benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o486.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O2S

  • Mr = 298.38

  • Orthorhombic, P n a 21

  • a = 12.0402 (6) Å

  • b = 19.673 (1) Å

  • c = 6.4399 (3) Å

  • V = 1525.40 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 (2) K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 9082 measured reflections

  • 2486 independent reflections

  • 2339 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 1.08

  • 2486 reflections

  • 194 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACgi 0.98 2.68 3.565 (5) 151
C10—H10⋯O2i 0.95 2.48 3.306 (4) 146
C15—H15B⋯O2 0.98 2.38 3.248 (4) 147
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]. Cg is the centroid of the C9–C14 phenyl ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran ring systems have attracted considerable interest because of their various pharmacological properties (Howlett et al., 1999; Ward, 1997). This work is related to earlier communications on the synthesis and structure of similar benzofuran analogues (Choi et al., 2007, 2008)

In the title commmpound, the benzofuran unit is essentially planar, with a mean deviation of 0.008 Å from the least-squares plane defined by the nine constituent atoms (Fig. 1). The phenyl ring (C9-C14) is almost perpendicular to the plane of the benzofuran system [88.56 (7)°] and is tilted slightly towards it.

The title commpound crystallized in the non-centrosymmetric space group Pna21 in spite of having no asymmetric carbon atoms. The space group was caused by a right handed pseudo-helix along the a axis. In addition, the molecular packing (Fig. 2) is stabilized by a C—H···π interaction between a methyl H atom and the phenyl ring of the phenylsulfinyl substituent, with a C17—17A···Cgi separation of 3.565 (5) Å (Fig. 2 and Table1; Cg is the centroid of C9-C14 phenyl ring). The molecular packing is further stabilized by intra- and intermolecular C—H···O interactions (Fig. 2 and Table 1: symmetry code as in Fig. 2).

Related literature top

For details of the pharmacological properties of benzofuran compounds, see: Howlett et al. (1999); Ward (1997). For the structures of other benzofuran derivatives, see: Choi et al. (2007, 2008). Cg is the centroid of the C9–C14 phenyl ring.

Experimental top

3-Chloroperoxybenzoic acid (77%, 190 mg, 0.85 mmol) was added in small portions to a stirred solution of 2,4,6,7-tetramethyl-3-phenylsulfanyl-1-benzofuran (226 mg, 0.8 mmol) in dichloromethane (20 ml) at 273 K. After being stirred at room temperature for 2h, the mixture was washed with a saturated soution of sodium bicarbonate and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 407-408 K; Rf = 0.54 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation from acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.13 (s, 3H), 2.29 (s, 3H), 2.37 (s, 3H), 2.71 (s, 3H), 6.77 (s, 1H), 7.39-7.45 (m, 3H), 7.48-7.51 (m, 2H); EI-MS 298 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. Friedel pairs were merged at final refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the structure projected on the ab plane. C—H···π and C—H···O interactions are shown as dotted lines. Cg denotes the ring centroid. [Symmetry code: (i)x-1/2, -y+3/2, z; (ii) x+1/2, -y+3/2, z; (iii) -x+1, -y+1, z+1/2; (iv) -x+3/2, y-1/2, z-1/2; (iv) -x+1/2, y-1/2, z+1/2.]
2,4,6,7-Tetramethyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C18H18O2SF(000) = 632
Mr = 298.38Dx = 1.299 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p_2c_-2nCell parameters from 5414 reflections
a = 12.0402 (6) Åθ = 2.7–28.2°
b = 19.673 (1) ŵ = 0.21 mm1
c = 6.4399 (3) ÅT = 173 K
V = 1525.40 (13) Å3Block, colorless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
2339 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.102
Graphite monochromatorθmax = 27.0°, θmin = 2.7°
Detector resolution: 10.0 pixels mm-1h = 1415
ϕ and ω scansk = 2524
9082 measured reflectionsl = 84
2486 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0864P)2 + 0.5202P]
where P = (Fo2 + 2Fc2)/3
2486 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.51 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
C18H18O2SV = 1525.40 (13) Å3
Mr = 298.38Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.0402 (6) ŵ = 0.21 mm1
b = 19.673 (1) ÅT = 173 K
c = 6.4399 (3) Å0.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
2339 reflections with I > 2σ(I)
9082 measured reflectionsRint = 0.102
2486 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.138H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
2486 reflectionsΔρmin = 0.43 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.60317 (5)0.74039 (3)0.74685 (15)0.0220 (2)
O10.33116 (17)0.63540 (10)0.8280 (4)0.0229 (5)
O20.71121 (16)0.70681 (11)0.6963 (4)0.0308 (6)
C10.4924 (2)0.68198 (13)0.7252 (5)0.0200 (6)
C20.4634 (2)0.63018 (13)0.5731 (5)0.0199 (6)
C30.5073 (3)0.60387 (14)0.3879 (6)0.0237 (6)
C40.4461 (3)0.55262 (15)0.2916 (5)0.0274 (7)
H40.47440.53360.16680.033*
C50.3448 (3)0.52741 (14)0.3689 (6)0.0277 (7)
C60.3011 (2)0.55259 (14)0.5539 (6)0.0245 (7)
C70.3638 (2)0.60360 (14)0.6471 (5)0.0207 (6)
C80.4118 (2)0.68331 (14)0.8720 (5)0.0205 (6)
C90.5685 (2)0.79514 (14)0.5322 (5)0.0204 (6)
C100.4647 (3)0.82691 (15)0.5279 (6)0.0274 (7)
H100.41010.81710.63000.033*
C110.4437 (3)0.87313 (16)0.3706 (7)0.0339 (8)
H110.37340.89500.36400.041*
C120.5237 (3)0.88799 (16)0.2224 (7)0.0344 (8)
H120.50810.92020.11630.041*
C130.6266 (3)0.85595 (15)0.2287 (7)0.0290 (7)
H130.68110.86580.12640.035*
C140.6494 (2)0.80925 (14)0.3858 (6)0.0235 (7)
H140.71960.78740.39230.028*
C150.6131 (3)0.62939 (17)0.2903 (6)0.0281 (8)
H15A0.64360.59430.19860.042*
H15B0.66720.64000.39940.042*
H15C0.59750.67050.20950.042*
C160.2833 (3)0.47364 (15)0.2454 (9)0.0399 (9)
H16A0.28980.42970.31600.060*
H16B0.31560.47030.10610.060*
H16C0.20470.48620.23440.060*
C170.1937 (3)0.52894 (17)0.6488 (7)0.0337 (8)
H17A0.13140.55210.58120.051*
H17B0.19350.53960.79750.051*
H17C0.18620.47970.62960.051*
C180.3902 (3)0.72565 (17)1.0569 (6)0.0270 (7)
H18A0.45560.75361.08680.041*
H18B0.37430.69631.17610.041*
H18C0.32620.75521.03040.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0194 (3)0.0245 (3)0.0222 (4)0.0027 (2)0.0002 (3)0.0011 (4)
O10.0215 (10)0.0254 (10)0.0219 (12)0.0032 (8)0.0032 (9)0.0003 (9)
O20.0200 (10)0.0354 (11)0.0369 (16)0.0011 (8)0.0010 (10)0.0046 (10)
C10.0186 (12)0.0206 (12)0.0208 (17)0.0016 (9)0.0004 (12)0.0020 (13)
C20.0207 (14)0.0170 (12)0.0219 (16)0.0013 (10)0.0010 (13)0.0037 (12)
C30.0248 (14)0.0217 (14)0.0245 (17)0.0062 (10)0.0002 (13)0.0007 (13)
C40.0332 (16)0.0252 (14)0.0239 (19)0.0066 (11)0.0020 (14)0.0058 (12)
C50.0322 (17)0.0164 (12)0.034 (2)0.0029 (11)0.0089 (15)0.0041 (14)
C60.0234 (14)0.0177 (12)0.0323 (19)0.0013 (10)0.0036 (14)0.0047 (13)
C70.0201 (12)0.0185 (12)0.0234 (17)0.0022 (10)0.0002 (13)0.0037 (12)
C80.0194 (13)0.0212 (13)0.0210 (16)0.0017 (10)0.0018 (13)0.0036 (12)
C90.0205 (13)0.0170 (13)0.0237 (16)0.0009 (10)0.0002 (12)0.0011 (12)
C100.0232 (15)0.0250 (14)0.0340 (19)0.0003 (11)0.0061 (14)0.0015 (13)
C110.0251 (16)0.0282 (16)0.048 (2)0.0039 (11)0.0034 (16)0.0082 (16)
C120.0428 (18)0.0261 (14)0.034 (2)0.0007 (12)0.0011 (17)0.0064 (16)
C130.0305 (15)0.0271 (14)0.029 (2)0.0045 (11)0.0062 (17)0.0021 (16)
C140.0204 (14)0.0217 (12)0.0282 (18)0.0002 (10)0.0054 (13)0.0048 (13)
C150.0266 (15)0.0333 (15)0.025 (2)0.0041 (11)0.0058 (14)0.0023 (13)
C160.0422 (18)0.0277 (15)0.050 (2)0.0004 (12)0.007 (2)0.012 (2)
C170.0294 (16)0.0307 (16)0.041 (2)0.0080 (12)0.0016 (16)0.0059 (16)
C180.0251 (16)0.0323 (15)0.0236 (18)0.0001 (12)0.0020 (14)0.0031 (14)
Geometric parameters (Å, º) top
S—O21.495 (2)C10—H100.9500
S—C11.766 (3)C11—C121.387 (5)
S—C91.801 (3)C11—H110.9500
O1—C71.379 (4)C12—C131.391 (5)
O1—C81.383 (3)C12—H120.9500
C1—C81.355 (4)C13—C141.394 (5)
C1—C21.456 (4)C13—H130.9500
C2—C71.393 (4)C14—H140.9500
C2—C31.403 (5)C15—H15A0.9800
C3—C41.394 (4)C15—H15B0.9800
C3—C151.507 (4)C15—H15C0.9800
C4—C51.408 (5)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.393 (5)C16—H16C0.9800
C5—C161.516 (5)C17—H17A0.9800
C6—C71.392 (4)C17—H17B0.9800
C6—C171.504 (5)C17—H17C0.9800
C8—C181.476 (5)C18—H18A0.9800
C9—C141.383 (5)C18—H18B0.9800
C9—C101.398 (4)C18—H18C0.9800
C10—C111.385 (5)
O2—S—C1110.63 (13)C10—C11—H11119.5
O2—S—C9107.37 (15)C12—C11—H11119.5
C1—S—C998.84 (14)C11—C12—C13120.2 (3)
C7—O1—C8106.4 (2)C11—C12—H12119.9
C8—C1—C2108.1 (2)C13—C12—H12119.9
C8—C1—S118.2 (2)C12—C13—C14119.7 (3)
C2—C1—S133.6 (2)C12—C13—H13120.2
C7—C2—C3118.5 (3)C14—C13—H13120.2
C7—C2—C1103.8 (3)C9—C14—C13119.2 (3)
C3—C2—C1137.7 (3)C9—C14—H14120.4
C4—C3—C2116.5 (3)C13—C14—H14120.4
C4—C3—C15120.1 (3)C3—C15—H15A109.5
C2—C3—C15123.4 (3)C3—C15—H15B109.5
C3—C4—C5123.7 (3)H15A—C15—H15B109.5
C3—C4—H4118.1C3—C15—H15C109.5
C5—C4—H4118.1H15A—C15—H15C109.5
C6—C5—C4120.3 (3)H15B—C15—H15C109.5
C6—C5—C16120.8 (3)C5—C16—H16A109.5
C4—C5—C16118.9 (3)C5—C16—H16B109.5
C7—C6—C5114.9 (3)H16A—C16—H16B109.5
C7—C6—C17120.9 (3)C5—C16—H16C109.5
C5—C6—C17124.2 (3)H16A—C16—H16C109.5
O1—C7—C6122.5 (3)H16B—C16—H16C109.5
O1—C7—C2111.3 (3)C6—C17—H17A109.5
C6—C7—C2126.2 (3)C6—C17—H17B109.5
C1—C8—O1110.3 (3)H17A—C17—H17B109.5
C1—C8—C18134.4 (3)C6—C17—H17C109.5
O1—C8—C18115.2 (3)H17A—C17—H17C109.5
C14—C9—C10121.7 (3)H17B—C17—H17C109.5
C14—C9—S118.7 (2)C8—C18—H18A109.5
C10—C9—S119.3 (3)C8—C18—H18B109.5
C11—C10—C9118.1 (3)H18A—C18—H18B109.5
C11—C10—H10120.9C8—C18—H18C109.5
C9—C10—H10120.9H18A—C18—H18C109.5
C10—C11—C12121.0 (3)H18B—C18—H18C109.5
O2—S—C1—C8138.4 (2)C5—C6—C7—C20.3 (4)
C9—S—C1—C8109.2 (3)C17—C6—C7—C2179.2 (3)
O2—S—C1—C243.7 (3)C3—C2—C7—O1179.1 (2)
C9—S—C1—C268.7 (3)C1—C2—C7—O10.4 (3)
C8—C1—C2—C70.5 (3)C3—C2—C7—C60.4 (5)
S—C1—C2—C7178.5 (2)C1—C2—C7—C6179.2 (3)
C8—C1—C2—C3179.0 (3)C2—C1—C8—O10.3 (3)
S—C1—C2—C30.9 (6)S—C1—C8—O1178.72 (19)
C7—C2—C3—C40.2 (4)C2—C1—C8—C18176.4 (3)
C1—C2—C3—C4179.2 (3)S—C1—C8—C182.0 (5)
C7—C2—C3—C15178.8 (3)C7—O1—C8—C10.0 (3)
C1—C2—C3—C150.6 (6)C7—O1—C8—C18177.4 (3)
C2—C3—C4—C50.6 (5)O2—S—C9—C1413.1 (3)
C15—C3—C4—C5178.0 (3)C1—S—C9—C14128.1 (3)
C3—C4—C5—C61.4 (5)O2—S—C9—C10172.6 (2)
C3—C4—C5—C16177.4 (3)C1—S—C9—C1057.6 (3)
C4—C5—C6—C71.2 (4)C14—C9—C10—C110.5 (5)
C16—C5—C6—C7177.6 (3)S—C9—C10—C11174.7 (3)
C4—C5—C6—C17180.0 (3)C9—C10—C11—C120.6 (5)
C16—C5—C6—C171.3 (5)C10—C11—C12—C130.6 (6)
C8—O1—C7—C6179.1 (3)C11—C12—C13—C140.6 (5)
C8—O1—C7—C20.3 (3)C10—C9—C14—C130.5 (5)
C5—C6—C7—O1178.3 (3)S—C9—C14—C13174.7 (2)
C17—C6—C7—O10.6 (5)C12—C13—C14—C90.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cgi0.982.683.565 (5)151
C10—H10···O2i0.952.483.306 (4)146
C15—H15B···O20.982.383.248 (4)147
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC18H18O2S
Mr298.38
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)12.0402 (6), 19.673 (1), 6.4399 (3)
V3)1525.40 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9082, 2486, 2339
Rint0.102
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.09
No. of reflections2486
No. of parameters194
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cgi0.982.683.565 (5)151.1
C10—H10···O2i0.952.483.306 (4)145.8
C15—H15B···O20.982.383.248 (4)147.3
Symmetry code: (i) x1/2, y+3/2, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, R. S. (1997). Nat. Prod. Rep. 14, 43–74.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds