organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Fluoren-9-ylmeth­oxy­carbon­yl)-L-leucine

aNational Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003, Japan, and bAdvanced Technology Support Division, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
*Correspondence e-mail: yamada.kazuhiko@nims.go.jp

(Received 18 April 2008; accepted 13 May 2008; online 17 May 2008)

The title compound [systematic name: fluoren-9-yl N-(1-carb­oxy-3-methyl­butyl)carbamate], C21H23NO4, exhibits torsion angles that vary from the typical values found in other Fmoc-protected amino acids, viz. the orientations of the fluorene and carboxyl groups [C—O—C—C = 93.8 (2) and N—C—C=O = −23.6 (2)°]. The crystal structure exhibits two inter­molecular hydrogen bonds (O—H⋯O and N—H⋯O) that link the mol­ecules into two-dimensional sheets parallel to the ab plane.

Related literature

For related literature on the structures of N-α-Fmoc-protected amino acids, see: Valle et al. (1984[Valle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem. 62, 2661-2666.]); Yamada et al. (2008[Yamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO4

  • Mr = 353.40

  • Orthorhombic, P 21 21 21

  • a = 5.4953 (1) Å

  • b = 14.2700 (3) Å

  • c = 24.3759 (6) Å

  • V = 1911.51 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.40 × 0.08 × 0.06 mm

Data collection
  • Rigaku AFC-8 diffractometer with Saturn70 CCD detector

  • Absorption correction: none

  • 40257 measured reflections

  • 3207 independent reflections

  • 2906 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.09

  • 3207 reflections

  • 327 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2H⋯O3i 0.85 (3) 1.82 (3) 2.6558 (17) 167 (3)
N1—H1N⋯O1ii 0.87 (3) 2.24 (3) 3.0751 (18) 161 (2)
C8—H8A⋯O1iii 0.90 (2) 2.51 (2) 3.392 (2) 166 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The fluoren-9-ylmethoxycarbonyl (Fmoc) group is currently one of the most frequently used protecting groups for peptide synthesis since rapid cleavages can be readily achieved under mild basic conditions with racemization-free results. Almost all the Fmoc-protected twenty-L-amino acids are commercially available. The crystal structures of N-α-Fmoc-protected-L-alanine monohydrate (II, Valle et al., 1984) and L-serine (III, Yamada et al., 2008) have been reported so far. In the present study, we have carried out the crystal structure analysis of N-α-Fmoc-L-leucine, (I).

The bond distances and bond angles of (I, Fig. 1) are consistent with the typical values of Fmoc-protected amino acids found in the other crystal structures. Some torsion angles, however, are found to be quite different. The torsion angle of O2—C6—C1—N1, for example, is -23.6 (2)°, which is in disagreement with the previous observations in the Fmoc-protected amino acids in which the corresponding angles are 150.6° and 175.8° for (II) (Valle et al., 1984) and (III) (Yamada et al., 2008), respectively. Another example is that the torsion angle of C6—C1—N1—C7 in (I) is found to be -134.51 (15)°, which is in reasonable agreement with that of (II), -151.6°, but is inconsistent with that found in (II), -65.6°. Each angle between the fluorene ring and the NC(δb O)O plane is found to be different among the three Fmoc-protected amino acids. The torsion angles C7—O4—C8—C9 and O4—C8—C9—C10 for the title compound, for instance, are 93.78 (16)° and 60.54 (17)°, respectively. On the other hand, the corresponding angles are -179.7° and -172.1°, and 121.9° and -68.2° for (II) and (III), respectively.

Crystals of (I) contain two intermolecular hydrogen bonds (Table 1), which are formed between the carboxyl (O2—H2H) and amide oxygens (O3), and between the amide (N1—H1N) and the carbonyl (O1). The molecules are linked by O2—H2H···O3 hydrogen bonds to form a chain structure along the b axis. The linkage is supported by an additional C—H···O interaction (C8—H8A···O1). The chains are joined together by the N1—H1N···O1 hydrogen bonds to form a sheet structure parallel to the ab plane. The Fmoc and i-butyl moieties are packed between the sheets (Fig. 2).

Related literature top

For related literature on the structures of N-α-Fmoc-protected-amino acids, see: Valle et al. (1984); Yamada et al. (2008).

Experimental top

A powdered sample (I) was obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and was used for crystallization without further purifications. Colourless needle like crystals of (I) were slowly grown from a saturated dichloromethane solution.

Refinement top

All H atoms were found in difference maps an refined with isotropic thermal parameters.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed. The hydrogen atoms were omitted for clarity, except for those forming the hydrogen bonds. Broken lines indicate the hydrogen bonds.
fluoren-9-yl N-(1-carboxy-3-methylbutyl)carbamate top
Crystal data top
C21H23NO4F(000) = 752
Mr = 353.40Dx = 1.228 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 40402 reflections
a = 5.4953 (1) Åθ = 2.2–30.0°
b = 14.2700 (3) ŵ = 0.09 mm1
c = 24.3759 (6) ÅT = 150 K
V = 1911.51 (7) Å3Needle, colourless
Z = 40.40 × 0.08 × 0.06 mm
Data collection top
Rigaku AFC-8
diffractometer with Saturn70 CCD detector
2906 reflections with I > 2σ(I)
Radiation source: fine-focus rotating anodeRint = 0.055
Confocal monochromatorθmax = 30.0°, θmin = 2.2°
Detector resolution: 28.5714 pixels mm-1h = 77
ω scansk = 2020
40257 measured reflectionsl = 3434
3207 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1717P]
where P = (Fo2 + 2Fc2)/3
3207 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H23NO4V = 1911.51 (7) Å3
Mr = 353.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4953 (1) ŵ = 0.09 mm1
b = 14.2700 (3) ÅT = 150 K
c = 24.3759 (6) Å0.40 × 0.08 × 0.06 mm
Data collection top
Rigaku AFC-8
diffractometer with Saturn70 CCD detector
2906 reflections with I > 2σ(I)
40257 measured reflectionsRint = 0.055
3207 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.09Δρmax = 0.27 e Å3
3207 reflectionsΔρmin = 0.26 e Å3
327 parameters
Special details top

Experimental. All Friedel pairs were merged, and all f''s of containing atoms were set to zero.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3755 (2)0.42665 (9)0.27853 (7)0.0421 (3)
O20.0123 (2)0.47101 (9)0.26982 (7)0.0455 (4)
H2H0.047 (5)0.526 (2)0.2667 (11)0.055 (7)*
O30.1016 (2)0.15166 (8)0.23545 (6)0.0360 (3)
O40.4680 (2)0.22208 (8)0.22403 (5)0.0306 (2)
N10.1792 (2)0.29706 (9)0.26957 (6)0.0284 (3)
H1N0.280 (5)0.3438 (18)0.2738 (9)0.044 (6)*
C10.0651 (3)0.31083 (10)0.29096 (7)0.0287 (3)
H10.171 (4)0.2659 (15)0.2718 (9)0.035 (5)*
C20.0783 (4)0.29621 (13)0.35339 (8)0.0406 (4)
H2A0.047 (5)0.3372 (19)0.3712 (10)0.048 (7)*
H2B0.225 (6)0.322 (2)0.3692 (13)0.065 (8)*
C30.0497 (4)0.19389 (13)0.37135 (8)0.0413 (4)
H30.102 (5)0.1685 (18)0.3516 (10)0.048 (7)*
C40.2695 (5)0.13470 (17)0.35502 (14)0.0601 (7)
H4A0.312 (6)0.1369 (19)0.3131 (11)0.060 (8)*
H4B0.387 (8)0.163 (3)0.3755 (15)0.088 (11)*
H4C0.262 (6)0.065 (2)0.3677 (13)0.072 (9)*
C50.0014 (9)0.18903 (19)0.43291 (10)0.0705 (9)
H5A0.163 (8)0.227 (3)0.4437 (15)0.093 (12)*
H5B0.017 (6)0.124 (2)0.4463 (11)0.060 (8)*
H5C0.127 (7)0.223 (2)0.4509 (13)0.072 (9)*
C60.1606 (3)0.40869 (10)0.27831 (7)0.0299 (3)
C70.2373 (3)0.21843 (10)0.24241 (6)0.0261 (3)
C80.5484 (3)0.14752 (11)0.18786 (6)0.0289 (3)
H8A0.476 (5)0.0932 (16)0.1976 (9)0.034 (5)*
H8B0.721 (5)0.1412 (15)0.1960 (9)0.034 (5)*
C90.5153 (3)0.17588 (11)0.12778 (7)0.0291 (3)
H90.337 (5)0.1858 (16)0.1193 (9)0.043 (6)*
C100.6613 (3)0.26233 (11)0.11325 (7)0.0308 (3)
C110.6335 (4)0.35445 (12)0.13131 (8)0.0385 (4)
H110.504 (5)0.3707 (16)0.1573 (9)0.035 (5)*
C120.8001 (4)0.42145 (13)0.11327 (9)0.0456 (4)
H120.783 (5)0.4852 (19)0.1253 (10)0.054 (7)*
C130.9889 (4)0.39782 (15)0.07795 (8)0.0459 (5)
H131.117 (5)0.4495 (19)0.0642 (11)0.057 (7)*
C141.0166 (4)0.30626 (15)0.05954 (8)0.0408 (4)
H141.148 (5)0.2884 (16)0.0338 (10)0.048 (6)*
C150.8514 (3)0.23871 (12)0.07728 (7)0.0323 (3)
C160.8333 (3)0.13832 (12)0.06424 (6)0.0329 (3)
C170.9738 (4)0.08170 (16)0.03029 (8)0.0437 (4)
H171.114 (5)0.1107 (17)0.0111 (10)0.048 (7)*
C180.9091 (5)0.01199 (16)0.02442 (8)0.0505 (5)
H181.003 (6)0.0545 (19)0.0001 (11)0.060 (7)*
C190.7076 (5)0.04829 (14)0.05165 (8)0.0473 (5)
H190.671 (5)0.1136 (19)0.0461 (10)0.053 (7)*
C200.5670 (4)0.00808 (12)0.08599 (8)0.0392 (4)
H200.423 (5)0.0159 (18)0.1060 (11)0.053 (7)*
C210.6305 (3)0.10141 (11)0.09189 (6)0.0317 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (6)0.0258 (5)0.0769 (9)0.0009 (4)0.0034 (6)0.0057 (6)
O20.0258 (6)0.0197 (5)0.0910 (11)0.0004 (4)0.0005 (7)0.0087 (6)
O30.0236 (5)0.0220 (5)0.0623 (7)0.0025 (4)0.0012 (5)0.0085 (5)
O40.0245 (5)0.0259 (5)0.0415 (6)0.0027 (4)0.0051 (5)0.0058 (4)
N10.0232 (6)0.0190 (5)0.0430 (7)0.0026 (5)0.0012 (5)0.0035 (5)
C10.0246 (7)0.0194 (6)0.0423 (8)0.0004 (5)0.0036 (6)0.0008 (5)
C20.0521 (11)0.0276 (7)0.0422 (8)0.0008 (8)0.0104 (8)0.0005 (6)
C30.0447 (10)0.0325 (8)0.0466 (9)0.0005 (8)0.0056 (8)0.0076 (7)
C40.0468 (13)0.0424 (11)0.0911 (19)0.0093 (10)0.0005 (13)0.0225 (12)
C50.115 (3)0.0485 (12)0.0480 (11)0.0009 (17)0.0066 (16)0.0115 (10)
C60.0243 (7)0.0214 (6)0.0440 (8)0.0003 (5)0.0012 (6)0.0026 (5)
C70.0229 (6)0.0204 (6)0.0351 (7)0.0002 (5)0.0014 (5)0.0006 (5)
C80.0270 (7)0.0235 (6)0.0361 (7)0.0019 (6)0.0027 (6)0.0013 (5)
C90.0249 (7)0.0254 (7)0.0370 (7)0.0001 (6)0.0018 (6)0.0007 (5)
C100.0282 (8)0.0287 (7)0.0353 (7)0.0019 (6)0.0020 (6)0.0030 (6)
C110.0407 (10)0.0293 (8)0.0455 (9)0.0012 (7)0.0029 (8)0.0011 (6)
C120.0529 (12)0.0301 (8)0.0537 (10)0.0085 (9)0.0003 (10)0.0034 (7)
C130.0463 (11)0.0412 (10)0.0500 (10)0.0140 (9)0.0004 (9)0.0089 (8)
C140.0346 (9)0.0490 (10)0.0389 (8)0.0064 (8)0.0021 (7)0.0082 (7)
C150.0305 (8)0.0338 (7)0.0326 (7)0.0004 (6)0.0026 (6)0.0037 (6)
C160.0325 (8)0.0364 (8)0.0296 (6)0.0047 (7)0.0040 (6)0.0006 (6)
C170.0427 (10)0.0523 (11)0.0360 (8)0.0134 (9)0.0003 (8)0.0033 (7)
C180.0625 (14)0.0489 (11)0.0401 (9)0.0206 (11)0.0069 (9)0.0108 (8)
C190.0671 (14)0.0341 (9)0.0406 (8)0.0092 (9)0.0122 (10)0.0079 (7)
C200.0483 (11)0.0299 (8)0.0395 (8)0.0001 (8)0.0082 (8)0.0026 (6)
C210.0330 (8)0.0298 (7)0.0324 (7)0.0042 (6)0.0060 (6)0.0021 (6)
Geometric parameters (Å, º) top
O1—C61.208 (2)C8—H8B0.97 (2)
O2—C61.318 (2)C9—C101.514 (2)
O2—H2H0.85 (3)C9—C211.515 (2)
O3—C71.2217 (18)C9—H91.01 (3)
O4—C71.3460 (19)C10—C111.395 (2)
O4—C81.4506 (18)C10—C151.405 (2)
N1—C71.3413 (18)C11—C121.395 (3)
N1—C11.453 (2)C11—H110.98 (2)
N1—H1N0.87 (3)C12—C131.390 (3)
C1—C61.523 (2)C12—H120.96 (3)
C1—C21.538 (2)C13—C141.390 (3)
C1—H10.98 (2)C13—H131.07 (3)
C2—C31.532 (3)C14—C151.393 (3)
C2—H2A1.00 (3)C14—H140.99 (3)
C2—H2B0.96 (3)C15—C161.471 (2)
C3—C41.527 (3)C16—C171.391 (3)
C3—C51.528 (3)C16—C211.405 (3)
C3—H31.03 (3)C17—C181.391 (3)
C4—H4A1.05 (3)C17—H170.99 (3)
C4—H4B0.91 (4)C18—C191.391 (4)
C4—H4C1.04 (3)C18—H180.99 (3)
C5—H5A1.08 (4)C19—C201.395 (3)
C5—H5B0.98 (3)C19—H190.96 (3)
C5—H5C0.96 (4)C20—C211.384 (2)
C8—C91.530 (2)C20—H200.99 (3)
C8—H8A0.90 (2)
C6—O2—H2H111.1 (19)C9—C8—H8B109.5 (13)
C7—O4—C8117.44 (12)H8A—C8—H8B107 (2)
C7—N1—C1120.66 (13)C10—C9—C21102.41 (13)
C7—N1—H1N123.1 (16)C10—C9—C8112.11 (13)
C1—N1—H1N116.1 (16)C21—C9—C8108.51 (13)
N1—C1—C6111.69 (13)C10—C9—H9110.6 (13)
N1—C1—C2112.36 (15)C21—C9—H9112.6 (13)
C6—C1—C2107.96 (13)C8—C9—H9110.4 (13)
N1—C1—H1106.7 (13)C11—C10—C15120.30 (16)
C6—C1—H1107.3 (13)C11—C10—C9129.51 (16)
C2—C1—H1110.7 (13)C15—C10—C9110.16 (14)
C3—C2—C1114.03 (14)C10—C11—C12118.34 (19)
C3—C2—H2A111.3 (15)C10—C11—H11120.5 (13)
C1—C2—H2A108.5 (14)C12—C11—H11121.1 (13)
C3—C2—H2B109.2 (18)C13—C12—C11121.27 (19)
C1—C2—H2B112.6 (18)C13—C12—H12119.4 (17)
H2A—C2—H2B100 (2)C11—C12—H12119.3 (17)
C4—C3—C5112.1 (2)C14—C13—C12120.65 (18)
C4—C3—C2111.80 (19)C14—C13—H13118.2 (15)
C5—C3—C2110.04 (18)C12—C13—H13121.1 (14)
C4—C3—H3108.9 (14)C13—C14—C15118.62 (19)
C5—C3—H3107.1 (14)C13—C14—H14121.8 (14)
C2—C3—H3106.6 (15)C15—C14—H14119.6 (14)
C3—C4—H4A114.4 (17)C14—C15—C10120.82 (17)
C3—C4—H4B100 (2)C14—C15—C16130.61 (18)
H4A—C4—H4B111 (3)C10—C15—C16108.56 (15)
C3—C4—H4C115 (2)C17—C16—C21120.53 (18)
H4A—C4—H4C109 (2)C17—C16—C15131.08 (19)
H4B—C4—H4C107 (3)C21—C16—C15108.36 (15)
C3—C5—H5A112 (2)C16—C17—C18118.6 (2)
C3—C5—H5B112.7 (16)C16—C17—H17118.0 (14)
H5A—C5—H5B109 (3)C18—C17—H17123.4 (14)
C3—C5—H5C107 (2)C17—C18—C19120.8 (2)
H5A—C5—H5C104 (3)C17—C18—H18121.1 (16)
H5B—C5—H5C112 (3)C19—C18—H18118.0 (16)
O1—C6—O2124.21 (15)C18—C19—C20120.84 (19)
O1—C6—C1122.02 (15)C18—C19—H19117.2 (17)
O2—C6—C1113.70 (14)C20—C19—H19121.9 (17)
O3—C7—N1125.15 (15)C21—C20—C19118.5 (2)
O3—C7—O4123.98 (14)C21—C20—H20118.9 (15)
N1—C7—O4110.87 (13)C19—C20—H20122.6 (15)
O4—C8—C9110.58 (13)C20—C21—C16120.73 (16)
O4—C8—H8A109.7 (14)C20—C21—C9129.00 (17)
C9—C8—H8A115.2 (14)C16—C21—C9110.22 (14)
O4—C8—H8B104.0 (13)
C7—N1—C1—C6134.51 (15)C13—C14—C15—C100.3 (3)
C7—N1—C1—C2103.99 (16)C13—C14—C15—C16178.99 (18)
N1—C1—C2—C370.9 (2)C11—C10—C15—C140.7 (3)
C6—C1—C2—C3165.48 (17)C9—C10—C15—C14177.72 (16)
C1—C2—C3—C469.5 (3)C11—C10—C15—C16178.72 (16)
C1—C2—C3—C5165.2 (2)C9—C10—C15—C162.82 (18)
N1—C1—C6—O1159.29 (17)C14—C15—C16—C170.5 (3)
C2—C1—C6—O176.7 (2)C10—C15—C16—C17178.86 (18)
N1—C1—C6—O223.6 (2)C14—C15—C16—C21178.76 (18)
C2—C1—C6—O2100.39 (19)C10—C15—C16—C210.63 (18)
C1—N1—C7—O33.6 (2)C21—C16—C17—C180.1 (3)
C1—N1—C7—O4177.08 (13)C15—C16—C17—C18178.11 (18)
C8—O4—C7—O38.3 (2)C16—C17—C18—C190.3 (3)
C8—O4—C7—N1172.31 (13)C17—C18—C19—C200.7 (3)
C7—O4—C8—C993.78 (16)C18—C19—C20—C210.8 (3)
O4—C8—C9—C1060.54 (17)C19—C20—C21—C160.5 (3)
O4—C8—C9—C21172.91 (13)C19—C20—C21—C9177.57 (17)
C21—C9—C10—C11176.89 (18)C17—C16—C21—C200.2 (2)
C8—C9—C10—C1167.0 (2)C15—C16—C21—C20178.61 (16)
C21—C9—C10—C154.84 (17)C17—C16—C21—C9177.72 (15)
C8—C9—C10—C15111.28 (16)C15—C16—C21—C93.83 (18)
C15—C10—C11—C120.7 (3)C10—C9—C21—C20177.46 (17)
C9—C10—C11—C12177.40 (17)C8—C9—C21—C2063.8 (2)
C10—C11—C12—C130.3 (3)C10—C9—C21—C165.24 (17)
C11—C12—C13—C140.1 (3)C8—C9—C21—C16113.45 (15)
C12—C13—C14—C150.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2H···O3i0.85 (3)1.82 (3)2.6558 (17)167 (3)
N1—H1N···O1ii0.87 (3)2.24 (3)3.0751 (18)161 (2)
C8—H8A···O1iii0.90 (2)2.51 (2)3.392 (2)166 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H23NO4
Mr353.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)5.4953 (1), 14.2700 (3), 24.3759 (6)
V3)1911.51 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.08 × 0.06
Data collection
DiffractometerRigaku AFC-8
diffractometer with Saturn70 CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
40257, 3207, 2906
Rint0.055
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.09
No. of reflections3207
No. of parameters327
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2005), HKL-2000 (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2H···O3i0.85 (3)1.82 (3)2.6558 (17)167 (3)
N1—H1N···O1ii0.87 (3)2.24 (3)3.0751 (18)161 (2)
C8—H8A···O1iii0.90 (2)2.51 (2)3.392 (2)166 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

KY thanks the Ministry of Education, Science, Sports, Culture, and Technology (MEXT) of Japan for funding this work [Young Scientists (B), 20750022].

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem. 62, 2661–2666.  CrossRef CAS Web of Science Google Scholar
First citationYamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds