organic compounds
Cholic acid–quinoxaline (2/1)
aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland
*Correspondence e-mail: magdan@amu.edu.pl
In the title 24H40O5·C8H6N2, the contains two molecules of cholic acid (3α,7α,12α-trihydroxy-5β-cholan-24-oic acid) and one molecule of quinoxaline which implies disorder of the quinoxaline in the P21. The molecules of cholic acid assemble, in an antiparallel arrangement, via O—H⋯O hydrogen bonds, into typical corrugated host bilayers which are lipophilic on the outside and lipophobic on the inside. The host framework belongs to the so called α-trans subtype. The quinoxaline molecules are accommodated in lipophilic channels formed between neighboring bilayers with only van der Waals interactions between host and guest. There is a crystallographic twofold screw axis directed along an empty channel in the host framework; however, neighboring guests in any one channel are related by a unit-cell translation along the b axis. Thus, the overall structure is a 1:1 superposition of two such channels related by the crystallographic twofold screw axis.
2CRelated literature
For structural information on cholic acid inclusion compounds, see: Miyata & Sada (1996); Nakano et al. (2001, 2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808015067/fl2200sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015067/fl2200Isup2.hkl
The title compound was obtained by dissolving cholic acid (0.1 g, 0.24 mmol) in melted quinoxaline (0.7 g, 5.38 mmol) and evaporation of the excess of quinoxaline at 60°C for two days. The resulting colorless plates were stable in air.
In the absence of significant
effects, Friedel pairs were averaged. The of cholic acid was assigned from the known configuration of the starting material. All H atoms were located in electron-density difference maps. For all H atoms were placed at calculated positions, with C—H = 0.96–0.98 Å and O—H = 0.82 Å, and were refined as riding on their carrier atoms with Uĩso(H) = 1.2Ueq(C, O). No restraints were imposed on geometry of the disordered quinoxaline molecules (occupancy factor 1/2).Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).2C24H40O5·C8H6N2 | F(000) = 516 |
Mr = 947.27 | Dx = 1.174 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 6598 reflections |
a = 12.2799 (5) Å | θ = 2.0–27.7° |
b = 7.8968 (3) Å | µ = 0.08 mm−1 |
c = 14.2831 (5) Å | T = 130 K |
β = 104.653 (4)° | Plate, colorless |
V = 1340.01 (9) Å3 | 0.6 × 0.2 × 0.09 mm |
Z = 1 |
Kuma KM-4-CCD κ-geometry diffractometer | 2929 independent reflections |
Radiation source: fine-focus sealed tube | 2548 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 26.4°, θmin = 4.3° |
Absorption correction: multi-scan (SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007) | h = −14→15 |
Tmin = 0.783, Tmax = 1.000 | k = −7→9 |
9593 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0726P)2] where P = (Fo2 + 2Fc2)/3 |
2929 reflections | (Δ/σ)max = 0.004 |
353 parameters | Δρmax = 0.23 e Å−3 |
1 restraint | Δρmin = −0.17 e Å−3 |
2C24H40O5·C8H6N2 | V = 1340.01 (9) Å3 |
Mr = 947.27 | Z = 1 |
Monoclinic, P21 | Mo Kα radiation |
a = 12.2799 (5) Å | µ = 0.08 mm−1 |
b = 7.8968 (3) Å | T = 130 K |
c = 14.2831 (5) Å | 0.6 × 0.2 × 0.09 mm |
β = 104.653 (4)° |
Kuma KM-4-CCD κ-geometry diffractometer | 2929 independent reflections |
Absorption correction: multi-scan (SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007) | 2548 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 1.000 | Rint = 0.016 |
9593 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 1 restraint |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.23 e Å−3 |
2929 reflections | Δρmin = −0.17 e Å−3 |
353 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.59222 (14) | 0.4911 (2) | 1.10590 (10) | 0.0314 (4) | |
H1O | 0.6242 | 0.4236 | 1.1475 | 0.038* | |
O2 | 0.42660 (12) | 0.2628 (2) | 0.79071 (10) | 0.0258 (3) | |
H2O | 0.4339 | 0.1702 | 0.8176 | 0.031* | |
O3 | 0.32033 (13) | 0.8075 (2) | 0.72265 (10) | 0.0274 (3) | |
H3O | 0.2725 | 0.8813 | 0.7056 | 0.033* | |
O4 | −0.16441 (14) | 0.5786 (2) | 0.30332 (13) | 0.0426 (5) | |
O5 | −0.20929 (13) | 0.8331 (2) | 0.23696 (11) | 0.0323 (4) | |
H5O | −0.2738 | 0.8000 | 0.2320 | 0.039* | |
C1 | 0.69475 (18) | 0.7038 (3) | 0.90818 (16) | 0.0274 (5) | |
H1A | 0.7753 | 0.6938 | 0.9355 | 0.033* | |
H1B | 0.6802 | 0.8167 | 0.8812 | 0.033* | |
C2 | 0.63568 (19) | 0.6848 (3) | 0.98942 (15) | 0.0255 (5) | |
H2A | 0.6637 | 0.7698 | 1.0386 | 0.031* | |
H2B | 0.5555 | 0.7026 | 0.9640 | 0.031* | |
C3 | 0.65639 (19) | 0.5100 (3) | 1.03418 (15) | 0.0275 (5) | |
H3A | 0.7367 | 0.4957 | 1.0651 | 0.033* | |
C4 | 0.61870 (19) | 0.3768 (3) | 0.95714 (15) | 0.0260 (5) | |
H4A | 0.5376 | 0.3832 | 0.9329 | 0.031* | |
H4B | 0.6368 | 0.2660 | 0.9863 | 0.031* | |
C5 | 0.67282 (18) | 0.3938 (3) | 0.87164 (15) | 0.0254 (5) | |
H5A | 0.7538 | 0.3747 | 0.8972 | 0.030* | |
C6 | 0.62925 (18) | 0.2534 (3) | 0.79734 (15) | 0.0270 (5) | |
H6A | 0.6791 | 0.2449 | 0.7546 | 0.032* | |
H6B | 0.6324 | 0.1465 | 0.8313 | 0.032* | |
C7 | 0.50925 (17) | 0.2804 (3) | 0.73578 (14) | 0.0236 (4) | |
H7A | 0.4935 | 0.1963 | 0.6836 | 0.028* | |
C8 | 0.49507 (17) | 0.4575 (3) | 0.69055 (14) | 0.0208 (4) | |
H8A | 0.5416 | 0.4633 | 0.6441 | 0.025* | |
C9 | 0.53446 (17) | 0.5997 (3) | 0.76600 (14) | 0.0209 (4) | |
H9A | 0.4872 | 0.5932 | 0.8119 | 0.025* | |
C10 | 0.65901 (17) | 0.5734 (3) | 0.82549 (15) | 0.0235 (5) | |
C11 | 0.51251 (17) | 0.7736 (3) | 0.71581 (14) | 0.0236 (4) | |
H11A | 0.5315 | 0.8613 | 0.7648 | 0.028* | |
H11B | 0.5625 | 0.7862 | 0.6734 | 0.028* | |
C12 | 0.39105 (16) | 0.8019 (3) | 0.65640 (14) | 0.0221 (4) | |
H12A | 0.3865 | 0.9109 | 0.6228 | 0.027* | |
C13 | 0.35326 (16) | 0.6593 (3) | 0.58027 (14) | 0.0193 (4) | |
C14 | 0.37382 (17) | 0.4900 (3) | 0.63560 (14) | 0.0192 (4) | |
H14A | 0.3301 | 0.4950 | 0.6842 | 0.023* | |
C15 | 0.31647 (18) | 0.3578 (3) | 0.56138 (15) | 0.0245 (5) | |
H15A | 0.2953 | 0.2588 | 0.5930 | 0.029* | |
H15B | 0.3654 | 0.3231 | 0.5211 | 0.029* | |
C16 | 0.21215 (18) | 0.4509 (3) | 0.50161 (15) | 0.0251 (5) | |
H16A | 0.1445 | 0.4049 | 0.5151 | 0.030* | |
H16B | 0.2067 | 0.4381 | 0.4330 | 0.030* | |
C17 | 0.22533 (16) | 0.6422 (3) | 0.53071 (14) | 0.0194 (4) | |
H17A | 0.1849 | 0.6601 | 0.5809 | 0.023* | |
C18 | 0.41975 (17) | 0.6735 (3) | 0.50303 (15) | 0.0249 (5) | |
H18A | 0.4973 | 0.6463 | 0.5313 | 0.030* | |
H18B | 0.4142 | 0.7870 | 0.4782 | 0.030* | |
H18C | 0.3893 | 0.5960 | 0.4512 | 0.030* | |
C19 | 0.74162 (19) | 0.5929 (4) | 0.76107 (17) | 0.0334 (5) | |
H19A | 0.8157 | 0.5596 | 0.7968 | 0.040* | |
H19B | 0.7430 | 0.7090 | 0.7414 | 0.040* | |
H19C | 0.7177 | 0.5224 | 0.7049 | 0.040* | |
C20 | 0.17040 (17) | 0.7576 (3) | 0.44491 (13) | 0.0224 (4) | |
H20A | 0.2059 | 0.7344 | 0.3920 | 0.027* | |
C21 | 0.18378 (19) | 0.9459 (3) | 0.46903 (16) | 0.0287 (5) | |
H21A | 0.2621 | 0.9756 | 0.4842 | 0.034* | |
H21B | 0.1541 | 0.9698 | 0.5237 | 0.034* | |
H21C | 0.1435 | 1.0109 | 0.4144 | 0.034* | |
C22 | 0.04541 (17) | 0.7089 (3) | 0.41068 (15) | 0.0263 (5) | |
H22A | 0.0403 | 0.5866 | 0.4047 | 0.032* | |
H22B | 0.0085 | 0.7418 | 0.4604 | 0.032* | |
C23 | −0.01830 (19) | 0.7862 (4) | 0.31591 (17) | 0.0382 (6) | |
H23A | −0.0199 | 0.9083 | 0.3227 | 0.046* | |
H23B | 0.0205 | 0.7603 | 0.2663 | 0.046* | |
C24 | −0.1376 (2) | 0.7201 (3) | 0.28483 (15) | 0.0300 (5) | |
N1A | −0.0432 (7) | 1.0289 (10) | 0.9084 (5) | 0.083 (2) | 0.50 |
C2A | −0.0825 (14) | 1.0781 (18) | 0.9829 (10) | 0.080 (2) | 0.50 |
H2Q | −0.1006 | 1.1947 | 0.9906 | 0.095* | 0.50 |
C3A | −0.0749 (6) | 0.9642 (11) | 1.0630 (5) | 0.0547 (16) | 0.50 |
H3Q | −0.1167 | 0.9897 | 1.1097 | 0.066* | 0.50 |
N4A | −0.0260 (5) | 0.8179 (8) | 1.0700 (4) | 0.0596 (14) | 0.50 |
C5A | 0.0703 (14) | 0.6025 (17) | 0.9949 (11) | 0.080 (2) | 0.50 |
H5Q | 0.0778 | 0.5261 | 1.0485 | 0.095* | 0.50 |
C6A | 0.1128 (8) | 0.5634 (13) | 0.9238 (6) | 0.076 (2) | 0.50 |
H6Q | 0.1481 | 0.4559 | 0.9204 | 0.091* | 0.50 |
C7A | 0.1092 (5) | 0.6676 (10) | 0.8484 (5) | 0.0579 (17) | 0.50 |
H7Q | 0.1446 | 0.6350 | 0.7985 | 0.070* | 0.50 |
C8A | 0.0569 (6) | 0.8161 (11) | 0.8407 (5) | 0.066 (2) | 0.50 |
H8Q | 0.0534 | 0.8864 | 0.7852 | 0.079* | 0.50 |
C9A | 0.0065 (5) | 0.8732 (9) | 0.9145 (5) | 0.0532 (16) | 0.50 |
C10A | 0.0145 (4) | 0.7716 (9) | 0.9960 (5) | 0.0493 (14) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0475 (10) | 0.0242 (9) | 0.0197 (7) | 0.0043 (7) | 0.0034 (7) | 0.0018 (6) |
O2 | 0.0272 (7) | 0.0232 (8) | 0.0249 (7) | 0.0007 (7) | 0.0030 (6) | 0.0045 (6) |
O3 | 0.0317 (8) | 0.0247 (8) | 0.0242 (7) | 0.0083 (7) | 0.0038 (6) | −0.0033 (6) |
O4 | 0.0346 (9) | 0.0363 (11) | 0.0491 (10) | −0.0068 (8) | −0.0037 (8) | 0.0064 (8) |
O5 | 0.0261 (8) | 0.0365 (10) | 0.0328 (8) | 0.0001 (7) | 0.0049 (7) | 0.0009 (7) |
C1 | 0.0243 (11) | 0.0257 (11) | 0.0270 (11) | −0.0035 (9) | −0.0029 (9) | 0.0000 (9) |
C2 | 0.0296 (11) | 0.0238 (12) | 0.0191 (10) | 0.0010 (9) | −0.0012 (8) | −0.0034 (8) |
C3 | 0.0302 (11) | 0.0268 (12) | 0.0212 (10) | 0.0021 (9) | −0.0011 (9) | −0.0029 (9) |
C4 | 0.0310 (11) | 0.0209 (11) | 0.0228 (10) | 0.0039 (9) | 0.0008 (8) | 0.0010 (8) |
C5 | 0.0204 (10) | 0.0278 (12) | 0.0250 (11) | 0.0053 (9) | 0.0005 (8) | −0.0015 (9) |
C6 | 0.0289 (11) | 0.0261 (12) | 0.0249 (10) | 0.0067 (10) | 0.0049 (8) | −0.0003 (9) |
C7 | 0.0276 (10) | 0.0206 (11) | 0.0212 (9) | 0.0013 (9) | 0.0034 (8) | −0.0016 (8) |
C8 | 0.0239 (10) | 0.0185 (10) | 0.0195 (9) | 0.0008 (9) | 0.0045 (8) | −0.0017 (8) |
C9 | 0.0202 (9) | 0.0204 (10) | 0.0207 (9) | −0.0017 (8) | 0.0025 (8) | −0.0025 (8) |
C10 | 0.0218 (10) | 0.0256 (12) | 0.0217 (10) | 0.0006 (9) | 0.0027 (8) | −0.0006 (9) |
C11 | 0.0248 (10) | 0.0221 (11) | 0.0208 (9) | −0.0031 (9) | −0.0003 (8) | 0.0001 (8) |
C12 | 0.0249 (10) | 0.0175 (11) | 0.0216 (9) | −0.0008 (9) | 0.0015 (8) | 0.0006 (8) |
C13 | 0.0213 (10) | 0.0188 (11) | 0.0171 (9) | −0.0018 (8) | 0.0034 (8) | 0.0004 (8) |
C14 | 0.0216 (10) | 0.0163 (10) | 0.0196 (9) | −0.0027 (8) | 0.0048 (8) | 0.0003 (8) |
C15 | 0.0279 (10) | 0.0219 (11) | 0.0228 (10) | −0.0020 (9) | 0.0049 (8) | −0.0035 (8) |
C16 | 0.0251 (11) | 0.0231 (11) | 0.0246 (10) | −0.0043 (9) | 0.0016 (8) | −0.0019 (9) |
C17 | 0.0187 (10) | 0.0212 (10) | 0.0187 (9) | −0.0023 (8) | 0.0055 (8) | −0.0015 (8) |
C18 | 0.0220 (10) | 0.0289 (12) | 0.0241 (10) | −0.0022 (9) | 0.0063 (8) | 0.0036 (9) |
C19 | 0.0232 (10) | 0.0425 (14) | 0.0339 (12) | −0.0033 (11) | 0.0064 (9) | 0.0007 (11) |
C20 | 0.0222 (10) | 0.0271 (11) | 0.0176 (9) | −0.0004 (9) | 0.0047 (8) | 0.0018 (8) |
C21 | 0.0306 (12) | 0.0275 (12) | 0.0248 (11) | 0.0028 (10) | 0.0012 (9) | 0.0030 (9) |
C22 | 0.0234 (10) | 0.0311 (12) | 0.0228 (10) | −0.0009 (9) | 0.0027 (8) | 0.0034 (9) |
C23 | 0.0294 (12) | 0.0474 (16) | 0.0321 (11) | −0.0058 (12) | −0.0028 (9) | 0.0134 (11) |
C24 | 0.0309 (12) | 0.0353 (14) | 0.0209 (10) | −0.0039 (10) | 0.0015 (9) | 0.0003 (9) |
N1A | 0.114 (5) | 0.067 (4) | 0.072 (4) | 0.017 (4) | 0.033 (4) | 0.023 (3) |
C2A | 0.099 (4) | 0.080 (4) | 0.053 (5) | 0.049 (5) | 0.007 (4) | 0.002 (3) |
C3A | 0.052 (4) | 0.064 (5) | 0.047 (3) | 0.006 (4) | 0.009 (3) | 0.002 (3) |
N4A | 0.060 (3) | 0.062 (4) | 0.048 (3) | 0.003 (3) | −0.001 (2) | −0.008 (3) |
C5A | 0.099 (4) | 0.080 (4) | 0.053 (5) | 0.049 (5) | 0.007 (4) | 0.002 (3) |
C6A | 0.073 (5) | 0.063 (6) | 0.081 (6) | 0.021 (5) | −0.003 (5) | −0.027 (5) |
C7A | 0.051 (4) | 0.055 (4) | 0.066 (4) | −0.005 (3) | 0.012 (3) | −0.024 (4) |
C8A | 0.064 (4) | 0.064 (5) | 0.071 (4) | −0.035 (4) | 0.019 (3) | −0.007 (4) |
C9A | 0.046 (3) | 0.045 (4) | 0.070 (4) | −0.012 (3) | 0.018 (3) | −0.013 (3) |
C10A | 0.032 (3) | 0.050 (4) | 0.058 (3) | −0.001 (3) | −0.004 (2) | −0.007 (3) |
O1—C3 | 1.449 (3) | C14—H14A | 0.9800 |
O1—H1O | 0.8200 | C15—C16 | 1.535 (3) |
O2—C7 | 1.438 (2) | C15—H15A | 0.9700 |
O2—H2O | 0.8200 | C15—H15B | 0.9700 |
O3—C12 | 1.438 (2) | C16—C17 | 1.564 (3) |
O3—H3O | 0.8200 | C16—H16A | 0.9700 |
O4—C24 | 1.213 (3) | C16—H16B | 0.9700 |
O5—C24 | 1.317 (3) | C17—C20 | 1.539 (3) |
O5—H5O | 0.8200 | C17—H17A | 0.9800 |
C1—C2 | 1.523 (3) | C18—H18A | 0.9600 |
C1—C10 | 1.545 (3) | C18—H18B | 0.9600 |
C1—H1A | 0.9700 | C18—H18C | 0.9600 |
C1—H1B | 0.9700 | C19—H19A | 0.9600 |
C2—C3 | 1.515 (3) | C19—H19B | 0.9600 |
C2—H2A | 0.9700 | C19—H19C | 0.9600 |
C2—H2B | 0.9700 | C20—C21 | 1.526 (3) |
C3—C4 | 1.508 (3) | C20—C22 | 1.537 (3) |
C3—H3A | 0.9800 | C20—H20A | 0.9800 |
C4—C5 | 1.537 (3) | C21—H21A | 0.9600 |
C4—H4A | 0.9700 | C21—H21B | 0.9600 |
C4—H4B | 0.9700 | C21—H21C | 0.9600 |
C5—C6 | 1.534 (3) | C22—C23 | 1.510 (3) |
C5—C10 | 1.555 (3) | C22—H22A | 0.9700 |
C5—H5A | 0.9800 | C22—H22B | 0.9700 |
C6—C7 | 1.528 (3) | C23—C24 | 1.512 (3) |
C6—H6A | 0.9700 | C23—H23A | 0.9700 |
C6—H6B | 0.9700 | C23—H23B | 0.9700 |
C7—C8 | 1.532 (3) | N1A—C2A | 1.332 (15) |
C7—H7A | 0.9800 | N1A—C9A | 1.366 (10) |
C8—C14 | 1.519 (3) | C2A—C3A | 1.440 (19) |
C8—C9 | 1.547 (3) | C2A—H2Q | 0.9600 |
C8—H8A | 0.9800 | C3A—N4A | 1.294 (11) |
C9—C11 | 1.541 (3) | C3A—H3Q | 0.9600 |
C9—C10 | 1.564 (3) | N4A—C10A | 1.329 (8) |
C9—H9A | 0.9800 | C5A—C6A | 1.292 (18) |
C10—C19 | 1.540 (3) | C5A—C10A | 1.503 (13) |
C11—C12 | 1.534 (3) | C5A—H5Q | 0.9600 |
C11—H11A | 0.9700 | C6A—C7A | 1.346 (13) |
C11—H11B | 0.9700 | C6A—H6Q | 0.9600 |
C12—C13 | 1.552 (3) | C7A—C8A | 1.327 (11) |
C12—H12A | 0.9800 | C7A—H7Q | 0.9600 |
C13—C18 | 1.534 (3) | C8A—C9A | 1.424 (10) |
C13—C14 | 1.541 (3) | C8A—H8Q | 0.9600 |
C13—C17 | 1.557 (3) | C9A—C10A | 1.397 (10) |
C14—C15 | 1.527 (3) | ||
C3—O1—H1O | 109.5 | C15—C14—H14A | 106.3 |
C7—O2—H2O | 109.5 | C13—C14—H14A | 106.3 |
C12—O3—H3O | 109.5 | C14—C15—C16 | 103.41 (17) |
C24—O5—H5O | 109.5 | C14—C15—H15A | 111.0 |
C2—C1—C10 | 114.76 (18) | C16—C15—H15A | 111.2 |
C2—C1—H1A | 108.6 | C14—C15—H15B | 111.0 |
C10—C1—H1A | 108.5 | C16—C15—H15B | 111.1 |
C2—C1—H1B | 108.5 | H15A—C15—H15B | 109.1 |
C10—C1—H1B | 108.7 | C15—C16—C17 | 107.41 (17) |
H1A—C1—H1B | 107.5 | C15—C16—H16A | 110.2 |
C3—C2—C1 | 110.47 (18) | C17—C16—H16A | 110.2 |
C3—C2—H2A | 109.5 | C15—C16—H16B | 110.2 |
C1—C2—H2A | 109.5 | C17—C16—H16B | 110.2 |
C3—C2—H2B | 109.6 | H16A—C16—H16B | 108.5 |
C1—C2—H2B | 109.6 | C20—C17—C13 | 119.94 (16) |
H2A—C2—H2B | 108.1 | C20—C17—C16 | 111.41 (16) |
O1—C3—C4 | 108.80 (18) | C13—C17—C16 | 103.25 (16) |
O1—C3—C2 | 109.21 (18) | C20—C17—H17A | 107.2 |
C4—C3—C2 | 109.87 (16) | C13—C17—H17A | 107.2 |
O1—C3—H3A | 109.6 | C16—C17—H17A | 107.2 |
C4—C3—H3A | 109.6 | C13—C18—H18A | 109.5 |
C2—C3—H3A | 109.7 | C13—C18—H18B | 109.5 |
C3—C4—C5 | 113.84 (18) | H18A—C18—H18B | 109.5 |
C3—C4—H4A | 108.8 | C13—C18—H18C | 109.5 |
C5—C4—H4A | 108.8 | H18A—C18—H18C | 109.5 |
C3—C4—H4B | 108.8 | H18B—C18—H18C | 109.5 |
C5—C4—H4B | 108.8 | C10—C19—H19A | 109.5 |
H4A—C4—H4B | 107.7 | C10—C19—H19B | 109.5 |
C6—C5—C4 | 109.95 (18) | H19A—C19—H19B | 109.5 |
C6—C5—C10 | 112.59 (17) | C10—C19—H19C | 109.5 |
C4—C5—C10 | 113.20 (17) | H19A—C19—H19C | 109.5 |
C6—C5—H5A | 106.8 | H19B—C19—H19C | 109.5 |
C4—C5—H5A | 107.0 | C21—C20—C22 | 110.95 (19) |
C10—C5—H5A | 106.9 | C21—C20—C17 | 113.38 (16) |
C7—C6—C5 | 114.47 (18) | C22—C20—C17 | 107.83 (17) |
C7—C6—H6A | 108.6 | C21—C20—H20A | 108.2 |
C5—C6—H6A | 108.7 | C22—C20—H20A | 108.1 |
C7—C6—H6B | 108.7 | C17—C20—H20A | 108.2 |
C5—C6—H6B | 108.7 | C20—C21—H21A | 109.5 |
H6A—C6—H6B | 107.6 | C20—C21—H21B | 109.5 |
O2—C7—C6 | 112.56 (16) | H21A—C21—H21B | 109.5 |
O2—C7—C8 | 107.32 (16) | C20—C21—H21C | 109.5 |
C6—C7—C8 | 111.10 (18) | H21A—C21—H21C | 109.5 |
O2—C7—H7A | 108.6 | H21B—C21—H21C | 109.5 |
C6—C7—H7A | 108.6 | C23—C22—C20 | 115.66 (19) |
C8—C7—H7A | 108.6 | C23—C22—H22A | 108.4 |
C14—C8—C7 | 111.34 (17) | C20—C22—H22A | 108.4 |
C14—C8—C9 | 109.29 (16) | C23—C22—H22B | 108.4 |
C7—C8—C9 | 112.75 (16) | C20—C22—H22B | 108.3 |
C14—C8—H8A | 107.8 | H22A—C22—H22B | 107.4 |
C7—C8—H8A | 107.7 | C22—C23—C24 | 111.6 (2) |
C9—C8—H8A | 107.7 | C22—C23—H23A | 109.3 |
C11—C9—C8 | 109.61 (16) | C24—C23—H23A | 109.3 |
C11—C9—C10 | 113.74 (17) | C22—C23—H23B | 109.3 |
C8—C9—C10 | 111.89 (16) | C24—C23—H23B | 109.3 |
C11—C9—H9A | 107.1 | H23A—C23—H23B | 108.0 |
C8—C9—H9A | 107.1 | O4—C24—O5 | 123.7 (2) |
C10—C9—H9A | 107.0 | O4—C24—C23 | 123.4 (2) |
C19—C10—C1 | 106.71 (18) | O5—C24—C23 | 112.9 (2) |
C19—C10—C5 | 109.08 (19) | C2A—N1A—C9A | 117.3 (9) |
C1—C10—C5 | 107.73 (16) | N1A—C2A—C3A | 119.3 (10) |
C19—C10—C9 | 111.32 (17) | N1A—C2A—H2Q | 120.8 |
C1—C10—C9 | 112.12 (18) | C3A—C2A—H2Q | 118.6 |
C5—C10—C9 | 109.75 (17) | N4A—C3A—C2A | 123.7 (8) |
C12—C11—C9 | 114.72 (17) | N4A—C3A—H3Q | 116.9 |
C12—C11—H11A | 108.5 | C2A—C3A—H3Q | 118.9 |
C9—C11—H11A | 108.6 | C3A—N4A—C10A | 116.4 (6) |
C12—C11—H11B | 108.7 | C6A—C5A—C10A | 119.7 (10) |
C9—C11—H11B | 108.5 | C6A—C5A—H5Q | 120.0 |
H11A—C11—H11B | 107.6 | C10A—C5A—H5Q | 120.2 |
O3—C12—C11 | 107.76 (15) | C5A—C6A—C7A | 123.0 (8) |
O3—C12—C13 | 111.10 (16) | C5A—C6A—H6Q | 121.9 |
C11—C12—C13 | 110.99 (17) | C7A—C6A—H6Q | 115.1 |
O3—C12—H12A | 109.0 | C8A—C7A—C6A | 121.6 (7) |
C11—C12—H12A | 109.0 | C8A—C7A—H7Q | 118.4 |
C13—C12—H12A | 108.9 | C6A—C7A—H7Q | 120.0 |
C18—C13—C14 | 112.59 (17) | C7A—C8A—C9A | 120.6 (7) |
C18—C13—C12 | 109.39 (16) | C7A—C8A—H8Q | 120.0 |
C14—C13—C12 | 106.79 (15) | C9A—C8A—H8Q | 119.4 |
C18—C13—C17 | 109.80 (15) | N1A—C9A—C10A | 120.4 (6) |
C14—C13—C17 | 99.98 (16) | N1A—C9A—C8A | 120.6 (7) |
C12—C13—C17 | 118.02 (17) | C10A—C9A—C8A | 118.9 (7) |
C8—C14—C15 | 117.58 (17) | N4A—C10A—C9A | 122.9 (6) |
C8—C14—C13 | 115.05 (17) | N4A—C10A—C5A | 121.1 (8) |
C15—C14—C13 | 104.49 (15) | C9A—C10A—C5A | 116.0 (8) |
C8—C14—H14A | 106.4 | ||
C10—C1—C2—C3 | 58.4 (2) | C7—C8—C14—C13 | −175.02 (16) |
C1—C2—C3—O1 | −175.59 (17) | C9—C8—C14—C13 | 59.8 (2) |
C1—C2—C3—C4 | −56.3 (2) | C18—C13—C14—C8 | 60.7 (2) |
O1—C3—C4—C5 | 174.60 (17) | C12—C13—C14—C8 | −59.4 (2) |
C2—C3—C4—C5 | 55.1 (2) | C17—C13—C14—C8 | 177.19 (16) |
C3—C4—C5—C6 | −179.90 (18) | C18—C13—C14—C15 | −69.7 (2) |
C3—C4—C5—C10 | −53.0 (2) | C12—C13—C14—C15 | 170.20 (16) |
C4—C5—C6—C7 | 75.1 (2) | C17—C13—C14—C15 | 46.75 (18) |
C10—C5—C6—C7 | −52.1 (2) | C8—C14—C15—C16 | −164.70 (17) |
C5—C6—C7—O2 | −69.4 (2) | C13—C14—C15—C16 | −35.8 (2) |
C5—C6—C7—C8 | 51.0 (2) | C14—C15—C16—C17 | 10.5 (2) |
O2—C7—C8—C14 | −52.2 (2) | C18—C13—C17—C20 | −44.7 (2) |
C6—C7—C8—C14 | −175.64 (16) | C14—C13—C17—C20 | −163.28 (17) |
O2—C7—C8—C9 | 71.1 (2) | C12—C13—C17—C20 | 81.5 (2) |
C6—C7—C8—C9 | −52.4 (2) | C18—C13—C17—C16 | 79.92 (19) |
C14—C8—C9—C11 | −53.0 (2) | C14—C13—C17—C16 | −38.63 (17) |
C7—C8—C9—C11 | −177.41 (17) | C12—C13—C17—C16 | −153.84 (17) |
C14—C8—C9—C10 | 179.85 (17) | C15—C16—C17—C20 | 147.96 (16) |
C7—C8—C9—C10 | 55.4 (2) | C15—C16—C17—C13 | 17.9 (2) |
C2—C1—C10—C19 | −170.19 (19) | C13—C17—C20—C21 | −57.8 (2) |
C2—C1—C10—C5 | −53.2 (2) | C16—C17—C20—C21 | −178.47 (17) |
C2—C1—C10—C9 | 67.7 (2) | C13—C17—C20—C22 | 178.95 (18) |
C6—C5—C10—C19 | −69.9 (2) | C16—C17—C20—C22 | 58.3 (2) |
C4—C5—C10—C19 | 164.58 (17) | C21—C20—C22—C23 | 65.8 (3) |
C6—C5—C10—C1 | 174.60 (17) | C17—C20—C22—C23 | −169.5 (2) |
C4—C5—C10—C1 | 49.1 (2) | C20—C22—C23—C24 | 175.6 (2) |
C6—C5—C10—C9 | 52.3 (2) | C22—C23—C24—O4 | −31.5 (4) |
C4—C5—C10—C9 | −73.2 (2) | C22—C23—C24—O5 | 147.5 (2) |
C11—C9—C10—C19 | −58.2 (2) | C9A—N1A—C2A—C3A | −2.5 (18) |
C8—C9—C10—C19 | 66.7 (2) | N1A—C2A—C3A—N4A | 4.0 (18) |
C11—C9—C10—C1 | 61.3 (2) | C2A—C3A—N4A—C10A | −2.8 (12) |
C8—C9—C10—C1 | −173.85 (16) | C10A—C5A—C6A—C7A | 0 (2) |
C11—C9—C10—C5 | −179.05 (16) | C5A—C6A—C7A—C8A | −2.9 (16) |
C8—C9—C10—C5 | −54.2 (2) | C6A—C7A—C8A—C9A | 2.5 (10) |
C8—C9—C11—C12 | 53.5 (2) | C2A—N1A—C9A—C10A | 0.2 (13) |
C10—C9—C11—C12 | 179.60 (16) | C2A—N1A—C9A—C8A | −175.9 (10) |
C9—C11—C12—O3 | 66.7 (2) | C7A—C8A—C9A—N1A | 177.3 (7) |
C9—C11—C12—C13 | −55.2 (2) | C7A—C8A—C9A—C10A | 1.1 (9) |
O3—C12—C13—C18 | 172.15 (16) | C3A—N4A—C10A—C9A | 0.3 (9) |
C11—C12—C13—C18 | −68.0 (2) | C3A—N4A—C10A—C5A | −178.4 (10) |
O3—C12—C13—C14 | −65.74 (19) | N1A—C9A—C10A—N4A | 1.0 (10) |
C11—C12—C13—C14 | 54.1 (2) | C8A—C9A—C10A—N4A | 177.2 (6) |
O3—C12—C13—C17 | 45.7 (2) | N1A—C9A—C10A—C5A | 179.8 (10) |
C11—C12—C13—C17 | 165.59 (16) | C8A—C9A—C10A—C5A | −4.0 (11) |
C7—C8—C14—C15 | −51.3 (2) | C6A—C5A—C10A—N4A | −177.4 (11) |
C9—C8—C14—C15 | −176.48 (16) | C6A—C5A—C10A—C9A | 3.8 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3i | 0.82 | 2.03 | 2.815 (2) | 161 |
O2—H2O···O1i | 0.82 | 1.86 | 2.648 (2) | 160 |
O3—H3O···O4ii | 0.82 | 2.03 | 2.834 (2) | 167 |
O5—H5O···O2ii | 0.82 | 1.85 | 2.656 (2) | 170 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C24H40O5·C8H6N2 |
Mr | 947.27 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 130 |
a, b, c (Å) | 12.2799 (5), 7.8968 (3), 14.2831 (5) |
β (°) | 104.653 (4) |
V (Å3) | 1340.01 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.6 × 0.2 × 0.09 |
Data collection | |
Diffractometer | Kuma KM-4-CCD κ-geometry diffractometer |
Absorption correction | Multi-scan (SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.783, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9593, 2929, 2548 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.102, 1.07 |
No. of reflections | 2929 |
No. of parameters | 353 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.17 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3i | 0.82 | 2.03 | 2.815 (2) | 161 |
O2—H2O···O1i | 0.82 | 1.86 | 2.648 (2) | 160 |
O3—H3O···O4ii | 0.82 | 2.03 | 2.834 (2) | 167 |
O5—H5O···O2ii | 0.82 | 1.85 | 2.656 (2) | 170 |
Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1. |
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miyata, M. & Sada, K. (1996). Comprehensive Supramolecular Chemistry. Solid-State Supramolecular Chemistry: Crystal Engineering, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 147–176. Oxford: Pergamon. Google Scholar
Nakano, K., Sada, K., Aburaya, K., Nakagawa, K., Yoswathananont, N., Tohnai, N. & Miyata, M. (2006). CrystEngComm, 8, 461–467. Web of Science CSD CrossRef CAS Google Scholar
Nakano, K., Sada, K., Kurozumi, J. & Miyata, M. (2001). Chem. Eur. J. 7, 209–220. CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cholic acid forms inclusion compounds with a large variety of guest molecules (Miyata & Sada, 1996). The host framework is strongly dependent on the guest but, in most cases, it is constructed from cholic acid bilayers which are lipophilic on the outside and lipophobic on the inside (Nakano et al., 2001, 2006). The type of the host framework and the host:guest ratio are strongly dependent on the volume and shape of the guest (Nakano et al., 2001). In the case of bilayers with an antiparallel arrangement of host molecules, four framework subtypes are generally recognized: α-gauche, α-trans, β-gauche and β-trans (Miyata & Sada, 1996) based on the conformation of the steroidal side chain (gauche/trans) and the stacking mode of the bilayers (α/β). Among numerous guest molecules that have cocrystallized with cholic acid no larger arenes or aromatic azaheterocycles have been reported. This is probably due to the problems with accommodating large molecules of fixed geometry within corrugated host channels. Quinoxaline easily cocrystallized with cholic acid, because as a low melting solid it could be used for cocrystallization without the need for any additional solvent.
In (I) ( Fig. 1), the host molecules are arranged in typical antiparallel bilayers and the framework can be classified as α-trans (Fig. 2). Four molecules of the host generate a cyclic motif of O—H···O hydrogen bonds (Fig. 3, Table 1) that assembles molecules into a two-dimensional polymeric structure (host bilayer). The hydrogen bonds are not completely buried on the inside of the bilayer as they partially line the grooves on the corrugated bilayer surface. The quinoxaline molecules are accommodated in lipophilic channels formed between neighboring bilayers and there are only van der Waals interactions between host and guest. The unit cell contains two molecules of the bile acid and one molecule of quinoxaline. In P21 this implies disorder of the guest and this is the case for (I): the crystallographic symmetry of the empty channel is higher than the symmetry of the guest arrangement within the channel. Neighbouring guests are related by translation along b [7.8968 (3) Å] and not by the crystallographic 21 axis operating along the channel (Fig. 4). There is no long-distance order in the channels because no reflections in addition to the Bragg reflections were detected. Thus, the model of the crystal structure of the title compound reveals superposition of two channels related by the crystallographic twofold screw axis ( Fig. 4).