metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­manganese(II)]-di-μ-pyridine-3-sulfonato-κ2N:O;κ2O:N]

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, bFaculty of Earth Sciences, China University of Geosciences, Wuhan 430074, People's Republic of China, and cDepartment of Resources and Environmental Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: fupeiliang@yahoo.cn

(Received 7 March 2008; accepted 28 April 2008; online 3 May 2008)

In the title polymeric complex, [Mn(C5H4NO3S)2(H2O)2]n, the Mn atom is located on a centre of inversion and is coordinated by two O atoms and two N atoms derived from four different pyridine-3-sulfonate (pySO3) ligands, and two O atoms derived from two water mol­ecules in a distorted trans-N2O4 octa­hedral geometry. The metal atoms are bridged by the pySO3 ligands to form a one-dimensional chain. The chains are further connected into a three-dimensional architecture via hydrogen bonds.

Related literature

For related structures, see: Brodersen et al. (1980[Brodersen, K., Dolling, R. & Liehr, G. (1980). Z. Anorg. Allg. Chem. 464, 17-22.]); Chandrasekhar (1977[Chandrasekhar, K. (1977). Acta Cryst. B33, 143-145.]); Cotton et al. (1992a[Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1992a). Polyhedron, 11, 2475-2481.],b[Cotton, F. A., Daniels, L. M., Montero, M. L. & Murillo, C. A. (1992b). Polyhedron, 11, 2767-2774.]); Mäkinen et al.(2001[Mäkinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. (2001). Chem. Eur. J. 7, 5176-5182.]); Van der Lee & Barboiu (2004[Lee, A. van der & Barboiu, M. (2004). Acta Cryst. E60, m421-m423.]); Walsh & Hathaway (1980[Walsh, B. & Hathaway, B. J. (1980). J. Chem. Soc., Dalton Trans. pp. 681-689.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H4NO3S)2(H2O)2]

  • Mr = 407.28

  • Monoclinic, P 21 /c

  • a = 7.6299 (13) Å

  • b = 13.201 (2) Å

  • c = 7.2714 (12) Å

  • β = 96.516 (3)°

  • V = 727.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.808

  • 4034 measured reflections

  • 1485 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.06

  • 1485 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O2i 0.89 1.91 2.786 (2) 168
O4—H4A⋯O1ii 0.89 1.90 2.778 (2) 169
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Structures of complexes or salts based on pyridinium-3-sulfonate are not numerous in the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002). Some six-coordinate metal complexes with pyridine-3-sulfonate (pySO3) ligands that are closely related to the title complex have been reported (Walsh & Hathaway, 1980; Cotton et al., 1992a). Other pySO3 complexes are also available (Brodersen et al., 1980; Cotton et al., 1992b; Mäkinen et al., 2001; van der Lee & Barboiu, 2004), as well as that of the pySO3H acid (Chandrasekhar, 1977). There are two structures of the [M(pySO3)2(H2O)2] type in the CSD. One of them is isostructural with the title compound (Walsh & Hathaway, 1980; Cotton et al., 1992a) and the other structure is a two-dimensional coordination polymer (Brodersen et al.,1980).

The Mn atom is located on a centre of inversion and is six-coordinated by two N atoms and two O atoms derived from four different pySO3, and two O atoms derived from two water molecules (Fig. 1). The resulting trans-N2O4 donor set defines a distorted octahedral environment for Mn. The bond angles deviate considerably from 90°; those derived from the bulkier groups deviate by nearly 6°. The Mn—O(water) distance of 2.1681 (15) Å and Mn—O(pySO3) distance of 2.1772 (15) Å are in the usual range.The Mn—N distance is also in the usual range for pyridine-like ligands.

The metal ions are bridgeding pySO3 anions to form a chain. In the crystal structure, chains are linked into a 3-D architecture via hydrogen bonding interactions (Table 1 & Fig. 2).

Related literature top

For related structures, see: Brodersen et al. (1980); Chandrasekhar (1977); Cotton et al. (1992a,b); Mäkinen et al.(2001); van der Lee & Barboiu (2004); Walsh & Hathaway (1980). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Pyridinium-3-sulfonate, (1 mmol,159 mg) was dissolved in methanol (A.R.,99.9%) (10 ml). To the resulting clear solution was added MnCl2.4H2O (0.5 mmol, 98 mg) in methanol (10 ml). After keeping the resulting mixture in air to evaporate about half of the solvent, colourless blocks of the title compound were deposited. The crystals were isolated and washed with alcohol three times (yield 82%). Analysis found (%): C 29.38, H 2.90, N 6.89, S 15.80; C10H12MnN2O8S2 requires (%): C 29.47, H 2.94, N 6.87, S 15.71.

Refinement top

The H atoms of the water molecules were located in a difference map. The H atoms bonded to C atoms were placed at calculated positions and refined in a riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The O-H distances were standardized to 0.89 Å and the H atoms of the water molecules were refined in a riding-model approximation with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme and 50% probability displacement ellipsoids for the title compound. The Mn atom is located at a center of inversion. H atoms are shown as small spheres of arbitrary radii [symmetry code: (a) -1 + x,y,z].
[Figure 2] Fig. 2. Crystal packing of the title compound viewed approximately down the a-direction showing the hydrogen bonding interactions as dashed lines.
catena-Poly[[diaquamanganese(II)]-di-µ-pyridine-3-sulfonato- κ2N:O;κ2O:N] top
Crystal data top
[Mn(C5H4NO3S)2(H2O)2]F(000) = 414
Mr = 407.28Dx = 1.859 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2334 reflections
a = 7.6299 (13) Åθ = 2.7–26.4°
b = 13.201 (2) ŵ = 1.24 mm1
c = 7.2714 (12) ÅT = 294 K
β = 96.516 (3)°Block, colourless
V = 727.7 (2) Å30.24 × 0.22 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1485 independent reflections
Radiation source: fine-focus sealed tube1301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 26.4°, θmin = 2.7°
ϕ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1615
Tmin = 0.755, Tmax = 0.808l = 97
4034 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0952P)2 + 1.5031P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1485 reflectionsΔρmax = 0.24 e Å3
106 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.087 (3)
Crystal data top
[Mn(C5H4NO3S)2(H2O)2]V = 727.7 (2) Å3
Mr = 407.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.6299 (13) ŵ = 1.24 mm1
b = 13.201 (2) ÅT = 294 K
c = 7.2714 (12) Å0.24 × 0.22 × 0.18 mm
β = 96.516 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1485 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1301 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.808Rint = 0.022
4034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
1485 reflectionsΔρmin = 0.37 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00001.00000.00000.01892 (13)
S10.72645 (6)0.87969 (4)0.28519 (7)0.01996 (14)
O10.7153 (2)0.95339 (12)0.4310 (2)0.0344 (4)
O20.8234 (2)0.78954 (11)0.3466 (2)0.0345 (4)
O30.7864 (2)0.92419 (13)0.1200 (2)0.0364 (4)
O40.0783 (2)1.09357 (11)0.2404 (2)0.0316 (4)
H4A0.13311.07350.34920.038*
H4B0.11331.15740.22950.038*
N10.2084 (2)0.88314 (12)0.1103 (2)0.0232 (4)
C10.1706 (3)0.78382 (15)0.1017 (3)0.0249 (4)
H10.05470.76450.06460.030*
C20.2946 (3)0.70884 (16)0.1449 (3)0.0296 (5)
H20.26270.64090.13630.035*
C30.4668 (3)0.73661 (15)0.2010 (3)0.0263 (4)
H30.55340.68780.23030.032*
C40.5079 (2)0.83896 (15)0.2129 (3)0.0188 (4)
C50.3761 (3)0.90965 (14)0.1666 (3)0.0224 (4)
H50.40470.97810.17470.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0134 (2)0.0187 (2)0.0237 (2)0.00056 (15)0.00157 (16)0.00122 (16)
S10.0146 (2)0.0193 (2)0.0250 (3)0.00040 (17)0.00246 (18)0.00251 (18)
O10.0305 (8)0.0318 (9)0.0386 (9)0.0022 (7)0.0057 (7)0.0107 (7)
O20.0252 (8)0.0247 (8)0.0499 (10)0.0067 (6)0.0114 (7)0.0029 (7)
O30.0228 (8)0.0506 (10)0.0356 (9)0.0106 (7)0.0022 (6)0.0125 (8)
O40.0398 (9)0.0249 (8)0.0281 (8)0.0042 (7)0.0054 (7)0.0024 (6)
N10.0170 (8)0.0215 (8)0.0302 (9)0.0009 (7)0.0012 (7)0.0025 (7)
C10.0186 (10)0.0253 (10)0.0298 (11)0.0038 (8)0.0014 (8)0.0006 (9)
C20.0281 (12)0.0184 (10)0.0416 (13)0.0043 (8)0.0011 (10)0.0005 (9)
C30.0213 (10)0.0182 (10)0.0393 (12)0.0042 (8)0.0025 (9)0.0039 (8)
C40.0152 (9)0.0206 (10)0.0205 (9)0.0006 (7)0.0009 (7)0.0013 (7)
C50.0186 (10)0.0156 (9)0.0322 (11)0.0011 (7)0.0009 (8)0.0012 (8)
Geometric parameters (Å, º) top
Mn1—O42.1681 (15)N1—C51.345 (3)
Mn1—O3i2.1773 (15)C1—C21.381 (3)
Mn1—N12.2937 (16)C1—H10.9300
S1—O21.4449 (15)C2—C31.380 (3)
S1—O11.4489 (16)C2—H20.9300
S1—O31.4570 (16)C3—C41.388 (3)
S1—C41.7737 (19)C3—H30.9300
O4—H4A0.8922C4—C51.385 (3)
O4—H4B0.8897C5—H50.9300
N1—C11.342 (3)
O4—Mn1—O4ii180.0C1—N1—C5117.40 (17)
O4—Mn1—O3i95.12 (6)C1—N1—Mn1120.26 (13)
O4ii—Mn1—O3i84.88 (6)C5—N1—Mn1121.96 (13)
O3iii—Mn1—O3i180.0N1—C1—C2123.47 (18)
O4—Mn1—N189.13 (6)N1—C1—H1118.3
O4ii—Mn1—N190.87 (6)C2—C1—H1118.3
O3iii—Mn1—N185.90 (6)C1—C2—C3118.80 (19)
O3i—Mn1—N194.09 (6)C1—C2—H2120.6
N1ii—Mn1—N1180.00 (6)C3—C2—H2120.6
O2—S1—O1113.41 (10)C2—C3—C4118.54 (18)
O2—S1—O3112.91 (10)C2—C3—H3120.7
O1—S1—O3112.51 (10)C4—C3—H3120.7
O2—S1—C4105.84 (9)C5—C4—C3119.22 (18)
O1—S1—C4106.81 (9)C5—C4—S1119.99 (15)
O3—S1—C4104.50 (9)C3—C4—S1120.79 (15)
S1—O3—Mn1iv146.62 (10)N1—C5—C4122.57 (18)
Mn1—O4—H4A127.1N1—C5—H5118.7
Mn1—O4—H4B121.7C4—C5—H5118.7
H4A—O4—H4B104.2
O2—S1—O3—Mn1iv66.4 (2)C1—C2—C3—C40.4 (3)
O1—S1—O3—Mn1iv63.6 (2)C2—C3—C4—C50.6 (3)
C4—S1—O3—Mn1iv179.06 (19)C2—C3—C4—S1179.69 (16)
O4—Mn1—N1—C1137.80 (16)O2—S1—C4—C5172.26 (16)
O4ii—Mn1—N1—C142.20 (16)O1—S1—C4—C551.12 (18)
O3iii—Mn1—N1—C1137.26 (16)O3—S1—C4—C568.31 (18)
O3i—Mn1—N1—C142.73 (16)O2—S1—C4—C38.1 (2)
O4—Mn1—N1—C549.49 (16)O1—S1—C4—C3129.20 (18)
O4ii—Mn1—N1—C5130.51 (16)O3—S1—C4—C3111.38 (18)
O3iii—Mn1—N1—C535.44 (16)C1—N1—C5—C40.7 (3)
O3i—Mn1—N1—C5144.56 (16)Mn1—N1—C5—C4172.23 (14)
C5—N1—C1—C20.9 (3)C3—C4—C5—N10.1 (3)
Mn1—N1—C1—C2172.13 (16)S1—C4—C5—N1179.77 (16)
N1—C1—C2—C30.4 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O2v0.891.912.786 (2)168
O4—H4A···O1vi0.891.902.778 (2)169
Symmetry codes: (v) x+1, y+1/2, z+1/2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C5H4NO3S)2(H2O)2]
Mr407.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.6299 (13), 13.201 (2), 7.2714 (12)
β (°) 96.516 (3)
V3)727.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.755, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
4034, 1485, 1301
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.06
No. of reflections1485
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.37

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O2i0.891.912.786 (2)168
O4—H4A···O1ii0.891.902.778 (2)169
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi (GKJ0639031), People's Republic of China.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrodersen, K., Dolling, R. & Liehr, G. (1980). Z. Anorg. Allg. Chem. 464, 17–22.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, K. (1977). Acta Cryst. B33, 143–145.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCotton, F. A., Daniels, L. M., Montero, M. L. & Murillo, C. A. (1992b). Polyhedron, 11, 2767–2774.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Daniels, L. M. & Murillo, C. A. (1992a). Polyhedron, 11, 2475–2481.  CSD CrossRef CAS Web of Science Google Scholar
First citationMäkinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. (2001). Chem. Eur. J. 7, 5176–5182.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, A. van der & Barboiu, M. (2004). Acta Cryst. E60, m421–m423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWalsh, B. & Hathaway, B. J. (1980). J. Chem. Soc., Dalton Trans. pp. 681–689.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds