organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1102-o1103

2,5-Di­methyl-3-(3-methyl­thio­phen-2-yl)perhydro­pyrrolo[3,4-d]isoxazole-4,6-dione

aDepartment of Chemistry, Faculty of Arts & Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Sciences, Gazi University, Ankara, Turkey, and cDepartment of Physics, Faculty of Arts & Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 27 February 2008; accepted 2 May 2008; online 17 May 2008)

The crystal structure of the title compound, C12H14N2O3S, exhibits intra­molecular C—H⋯S and inter­molecular C—H⋯S, C—H⋯O hydrogen bonds, C—S⋯N [S⋯N = 2.980 (2) Å, C—S⋯N = 145.78 (17)°] and C—H⋯π inter­actions; these inter­actions generate two C(5) chains and S(4), S(6) and R44(28) ring motifs. The isoxazole ring has an envelope conformation; the N atom, which is the flap atom, is displaced by 0.261 (2) Å from the plane defined by the remaining four atoms. The dihedral angle between the succinimide and thio­phene rings is 46.8 (2)°.

Related literature

For general background, see: Huisgen (1960[Huisgen, R. (1960). "10 Jahre Fonds der Chemischen Industrie" Düsseldorf, p. 73; reprinted in Naturwiss. (1961). Rundschau, 4, 63.]); Black et al. (1975[Black, D. C., Crozier, R. F. & Davis, V. C. (1975). Synthesis, pp. 205-221.]); Alibes et al. (2003[Alibes, R., Blanco, P., de March, P., Figueredo, M., Font, J., Alvarez-Larena, A. & Piniella, J. F. (2003). Tetrahedron Lett. 44, 523-525.]); Kumar et al. (2003[Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Eur. J. Med. Chem. 38, 613-619.]); Richman (2001[Richman, D. D. (2001). Nature (London), 410, 995-1001.]); Chiacchio et al. (2003a[Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Valveri, V., Mastino, A. & Romeo, G. (2003a). J. Med. Chem. 46, 3696-3702.],b[Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003b). Tetrahedron Asymmetry, 14, 2717-2723.]). For ring motif details, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related literature, see: Malamidou-Xenikaki et al. (1997[Malamidou-Xenikaki, E., Stampelos, X. N., Coutouli-Argyropoulou, E., Cardin, C. J., Teixera, S. & Kavounis, A. C. L. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 949-957.]); Coutouli-Argyropoulou et al. (1997[Coutouli-Argyropoulou, E., Malamidou-Xenikaki, E., Stampelos, X. N. & Alexopoulou, I. N. (1997). Tetrahedron, 53, 707-718.]); De Clercq (2002a[De Clercq (2002a). Biochim. Biophys. Acta, 1587, 258-275.],b[De Clercq (2002b). Nat. Rev. Drug Discovery, 1, 13-25.],c[De Clercq (2002c). Med. Res. Rev. 22, 531-535.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O3S

  • Mr = 266.31

  • Orthorhombic, P n a 21

  • a = 12.0318 (10) Å

  • b = 14.6759 (9) Å

  • c = 7.2635 (4) Å

  • V = 1282.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 (2) K

  • 0.52 × 0.48 × 0.43 mm

Data collection
  • STOE IPDS2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.895, Tmax = 0.929

  • 12725 measured reflections

  • 2511 independent reflections

  • 2212 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.090

  • S = 1.08

  • 2511 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1151 Friedel pairs

  • Flack parameter: 0.01 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯S1 0.96 2.97 3.467 (3) 114
C5—H5C⋯S1i 0.96 2.91 3.808 (3) 156
C8—H8⋯O3ii 0.88 (2) 2.56 (2) 3.426 (3) 168 (2)
C12—H12CCg1iii 0.96 2.94 3.693 (3) 137
Symmetry codes: (i) x, y, z-1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of the S1,C1–C4 ring.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A general principle for the synthesis of five-membered rings was introduced in 1960 as 1,3-dipolar cycloaddition and turned out to be remarkably widespread (Huisgen, 1960). Because of easy 1,3-dipolar cycloaddition reactions to alkenes, alkynes, isocyanates, isothiocyanates, phospharanes, sulphenes and sulphynl compounds, nitrones are the important intermediates in synthetic organic chemistry (Black et al., 1975). Especially, the nitrone-olefin 1,3-dipolar cycloaddition reaction is interesting since it can create three new contiguous stereogenic centers in a single step (Alibes et al., 2003). Both inter and intramolecular nitrone cycloaddition reactions have received attention because they are useful methods for the formation of heterocycles of biological active compounds (Kumar et al., 2003).

There has been an ever-increasing quest for modified nucleosides due to their potential applications in antiviral and anticancer therapies (Richman, 2001; De Clercq, 2002a,b,c). In a recent approach to modified nucleosides, the furanose ring has been replaced by other heterocyclic analogs (Chiacchio et al., 2003a). Among these N and O containing five-membered heterocycles, isoxazolidines, and isoxazoline derivatives have emerged as important candidates, and have been shown to display useful anticancer and antiviral properties (Chiacchio et al., 2003b). Consequently, synthetic studies on isoxazolidines have drawn considerable attention and 1,3-dipolar cycloadditions of nitrones afford the most straightforward route to isoxazolidines and we have described, the syntheses and crystal structure of, (I), 2,5-dimethyl-3-(3-methylthiophen-2-yl)-dihydro-2H-pyrrolo [3,4-d]isoxazole-4,6(5H,6aH)-dione.

The overall view and atom-labeling of the molecule of (I) are displayed in Figure 1. The hydrogen-bonding parameters are given in Table 1 and the packing arrangement of the molecules is illustrated in Figures 2–5. Compound is stabilized by intramolecular C—H···S hydrogen bond and S···N heteroatom interactions [in C1—S1···N; S···N = 2.980 (2) Å, C1—S1···N = 145.78 (17) °], which form S(4) and S(6) motifs, and intermolecular C—H···S and C—H···O hydrogen bonds and C—H···π interactions. As shown in Figures 2 and 3 the structure of the compound is made up of C8—H8···O3 and C5—H5c···S1 H-bonded polymeric bands of [C12H14N2O3S] molecules which are lined up nearly along the diagonal of the (100) (Fig. 2) and (001) (Fig. 3) planes. These polymeric C(5) chains are linked to each other and generate R44(28) ring motifs (Bernstein et al., 1995; Etter, 1990) (Fig. 4). The crystal packing is also stabilized by C12—H12c···Cg1 interactions (Fig. 5, Table 1). The dihedral angle between the succinimide and thiophen rings in [C12 H14 N2 O3 S] molecules is 46.8 (2) °.

Related literature top

For general background, see: Huisgen (1960); Black et al. (1975); Alibes et al. (2003); Kumar et al. (2003); Richman (2001); Chiacchio et al. (2003a,b). For ring motif details, see: Etter (1990); Bernstein et al. (1995). For related literature, see: Malamidou-Xenikaki et al. (1997); Coutouli-Argyropoulou et al. (1997); De Clercq (2002a,b,c). Cg1 is the centroid of the S1,C2–C4 ring.

Experimental top

N-Methyl-C-(-3-methylthiophen)nitrone was prepared from 3-methylthiophenecarbaldehyde, N-methyl-hydroxylamine hydrochloride and sodium carbonate in ethanol according to the procedure previously described (Malamidou-Xenikaki et al., 1997). This substance (3 mmol, 0.465 g) and N-methylmaleimide (3.3 mmol, 0.370 g) was dissolved in 50 ml benzene. The reaction mixture was refluxed for 9 h monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by column chromatography, using mixtures of petroleum ether and ethyl acetate (1:1) as the eluant. The cis-isomer, (I), was recrystallized from CHCl3 / n-hexane (Fig. 6) (mp: 403–405 K).

Refinement top

The aromatic and methyl H atoms included in calculated positions and refined using a riding model approximation with the constrains 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.0Ueq(C) for methyl. The methine H atoms were found in difference Fourier map and refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of C(5) chain along the [100] direction. H atoms not involved in hydrogen bonds have been omitted for clarity. The dashed line indicates a hydrogen bond. [Symmetry code: (i) 1 - x, 0.5 - y, z].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of C(5) chain along the [001] direction. H atoms not involved in hydrogen bonds have been omitted for clarity. The dashed line indicates a hydrogen bond. [Symmetry code: (i) x, y, z + 1].
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of R44(28) ring motif. H atoms not involved in hydrogen bonds have been omitted for clarity. The dashed line indicates hydrogen bond. [Symmetry codes: (i) x, y, z + 1; (ii) 1 - x, 1/2 - y, 1 + z; (iii) 1 - x, 1/2 - y, z].
[Figure 5] Fig. 5. A packing diagram of (I), with hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) 3/2 + x, 1/2 + y, 1/2 + z; (ii) 1 - x, 1 - y, -z; (iii) 1 - x, 1 - y, z - 1/2; (iv) 1/2 + x, 1/2 + y, z]
[Figure 6] Fig. 6. Preparation of the title compound.
2,5-Dimethyl-3-(3-methylthiophen-2-yl)perhydropyrrolo[3,4-d]isoxazole- 4,6-dione top
Crystal data top
C12H14N2O3SF(000) = 560
Mr = 266.31Dx = 1.379 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 12725 reflections
a = 12.0318 (10) Åθ = 1.7–28.0°
b = 14.6759 (9) ŵ = 0.25 mm1
c = 7.2635 (4) ÅT = 296 K
V = 1282.57 (15) Å3Block, colorless
Z = 40.52 × 0.48 × 0.43 mm
Data collection top
STOE IPDS2
diffractometer
2511 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2212 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.058
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
w–scan rotation methodh = 1414
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1818
Tmin = 0.895, Tmax = 0.929l = 88
12725 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1351P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2511 reflectionsΔρmax = 0.19 e Å3
177 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1151 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C12H14N2O3SV = 1282.57 (15) Å3
Mr = 266.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.0318 (10) ŵ = 0.25 mm1
b = 14.6759 (9) ÅT = 296 K
c = 7.2635 (4) Å0.52 × 0.48 × 0.43 mm
Data collection top
STOE IPDS2
diffractometer
2511 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2212 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.929Rint = 0.058
12725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.19 e Å3
S = 1.08Δρmin = 0.16 e Å3
2511 reflectionsAbsolute structure: Flack (1983), 1151 Friedel pairs
177 parametersAbsolute structure parameter: 0.01 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.76496 (19)0.41201 (15)0.2036 (3)0.0359 (5)
C20.8126 (2)0.40438 (19)0.0347 (4)0.0543 (7)
C30.9305 (2)0.4061 (2)0.0477 (5)0.0651 (9)
H30.97680.40080.05430.078*
C40.9688 (2)0.41604 (19)0.2179 (5)0.0622 (8)
H41.04380.41980.24790.075*
C50.7496 (4)0.3958 (3)0.1384 (4)0.1026 (14)
H5A0.68630.43560.13490.103*
H5B0.72490.33400.15290.103*
H5C0.79640.41220.24010.103*
C60.64389 (18)0.41050 (16)0.2458 (3)0.0369 (5)
C70.6216 (2)0.54462 (18)0.4463 (4)0.0608 (7)
H7A0.60490.56210.57070.061*
H7B0.56700.57010.36480.061*
H7C0.69390.56680.41330.061*
C80.5012 (2)0.32778 (16)0.4027 (4)0.0477 (6)
C90.5415 (2)0.26963 (18)0.5620 (4)0.0523 (6)
C100.6628 (2)0.24093 (17)0.3249 (4)0.0482 (7)
C110.5881 (2)0.31489 (17)0.2531 (4)0.0441 (5)
C120.6924 (3)0.1569 (2)0.6175 (6)0.0829 (10)
H12A0.65830.15430.73690.083*
H12B0.76850.17560.63010.083*
H12C0.68950.09780.56110.083*
N10.61980 (15)0.44503 (14)0.4315 (3)0.0409 (5)
N20.63330 (18)0.22216 (14)0.5031 (4)0.0546 (6)
O10.50134 (14)0.42160 (11)0.4512 (3)0.0543 (5)
O20.5015 (2)0.26507 (16)0.7130 (3)0.0813 (7)
O30.73562 (16)0.20182 (14)0.2435 (4)0.0697 (6)
S10.86334 (5)0.42104 (5)0.37501 (8)0.05480 (19)
H60.6036 (19)0.4459 (14)0.160 (3)0.028 (5)*
H80.432 (2)0.3135 (15)0.374 (4)0.045 (6)*
H110.561 (2)0.2974 (15)0.130 (4)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (12)0.0340 (11)0.0370 (11)0.0006 (9)0.0001 (9)0.0022 (9)
C20.0608 (16)0.0580 (16)0.0442 (15)0.0081 (13)0.0116 (13)0.0019 (12)
C30.0514 (16)0.0625 (18)0.082 (2)0.0035 (14)0.0339 (17)0.0026 (16)
C40.0357 (14)0.0555 (17)0.096 (2)0.0034 (12)0.0073 (14)0.0085 (17)
C50.109 (3)0.151 (4)0.0478 (17)0.020 (3)0.011 (2)0.020 (2)
C60.0326 (11)0.0403 (12)0.0378 (11)0.0036 (10)0.0012 (10)0.0071 (10)
C70.0629 (17)0.0447 (14)0.0747 (18)0.0046 (13)0.0221 (14)0.0023 (13)
C80.0284 (11)0.0511 (15)0.0634 (18)0.0013 (10)0.0011 (12)0.0058 (12)
C90.0459 (13)0.0448 (14)0.0664 (17)0.0075 (12)0.0057 (13)0.0077 (12)
C100.0356 (12)0.0355 (13)0.0735 (18)0.0046 (10)0.0001 (11)0.0017 (11)
C110.0344 (11)0.0462 (14)0.0517 (15)0.0007 (10)0.0063 (11)0.0006 (11)
C120.082 (2)0.061 (2)0.106 (3)0.0089 (17)0.010 (2)0.036 (2)
N10.0343 (10)0.0412 (10)0.0472 (11)0.0010 (8)0.0110 (8)0.0021 (8)
N20.0481 (13)0.0400 (11)0.0758 (16)0.0013 (9)0.0049 (11)0.0138 (11)
O10.0368 (9)0.0461 (9)0.0800 (12)0.0083 (7)0.0194 (8)0.0056 (9)
O20.0908 (17)0.0780 (15)0.0750 (14)0.0003 (13)0.0242 (13)0.0235 (13)
O30.0463 (11)0.0520 (11)0.1108 (16)0.0067 (9)0.0152 (12)0.0069 (11)
S10.0411 (3)0.0754 (4)0.0479 (3)0.0001 (3)0.0090 (3)0.0068 (4)
Geometric parameters (Å, º) top
C1—C21.358 (3)C7—H7B0.9600
C1—C61.489 (3)C7—H7C0.9600
C1—S11.723 (2)C8—O11.421 (3)
C2—C31.422 (4)C8—C91.517 (4)
C2—C51.474 (4)C8—C111.519 (4)
C3—C41.328 (5)C8—H80.88 (3)
C3—H30.9300C9—O21.200 (3)
C4—S11.708 (3)C9—N21.374 (4)
C4—H40.9300C10—O31.202 (3)
C5—H5A0.9600C10—N21.371 (4)
C5—H5B0.9600C10—C111.503 (4)
C5—H5C0.9600C11—H110.99 (3)
C6—N11.470 (3)C12—N21.454 (4)
C6—C111.556 (3)C12—H12A0.9600
C6—H60.95 (2)C12—H12B0.9600
C7—N11.466 (3)C12—H12C0.9600
C7—H7A0.9600N1—O11.473 (2)
C2—C1—C6126.7 (2)O1—C8—C11107.29 (19)
C2—C1—S1111.65 (19)C9—C8—C11104.8 (2)
C6—C1—S1121.65 (16)O1—C8—H8106.9 (15)
C1—C2—C3111.1 (2)C9—C8—H8110.5 (17)
C1—C2—C5124.1 (3)C11—C8—H8116.6 (19)
C3—C2—C5124.8 (3)O2—C9—N2125.4 (3)
C4—C3—C2114.2 (3)O2—C9—C8126.9 (3)
C4—C3—H3122.9N2—C9—C8107.8 (2)
C2—C3—H3122.9O3—C10—N2123.9 (3)
C3—C4—S1111.6 (2)O3—C10—C11127.6 (3)
C3—C4—H4124.2N2—C10—C11108.5 (2)
S1—C4—H4124.2C10—C11—C8104.7 (2)
C2—C5—H5A109.5C10—C11—C6113.9 (2)
C2—C5—H5B109.5C8—C11—C6102.1 (2)
H5A—C5—H5B109.5C10—C11—H11108.9 (14)
C2—C5—H5C109.5C8—C11—H11117.1 (15)
H5A—C5—H5C109.5C6—C11—H11110.3 (14)
H5B—C5—H5C109.5N2—C12—H12A109.5
N1—C6—C1112.12 (19)N2—C12—H12B109.5
N1—C6—C11101.21 (19)H12A—C12—H12B109.5
C1—C6—C11116.27 (19)N2—C12—H12C109.5
N1—C6—H6108.4 (13)H12A—C12—H12C109.5
C1—C6—H6110.9 (14)H12B—C12—H12C109.5
C11—C6—H6107.2 (13)C7—N1—C6114.11 (19)
N1—C7—H7A109.5C7—N1—O1103.87 (18)
N1—C7—H7B109.5C6—N1—O1101.51 (17)
H7A—C7—H7B109.5C10—N2—C9113.6 (2)
N1—C7—H7C109.5C10—N2—C12123.1 (3)
H7A—C7—H7C109.5C9—N2—C12123.3 (3)
H7B—C7—H7C109.5C8—O1—N1101.71 (16)
O1—C8—C9110.8 (2)C4—S1—C191.40 (14)
C6—C1—C2—C3178.3 (2)N1—C6—C11—C1088.1 (2)
S1—C1—C2—C30.1 (3)C1—C6—C11—C1033.7 (3)
C6—C1—C2—C51.9 (5)N1—C6—C11—C824.1 (2)
S1—C1—C2—C5179.9 (3)C1—C6—C11—C8145.9 (2)
C1—C2—C3—C41.0 (4)C1—C6—N1—C778.5 (3)
C5—C2—C3—C4178.8 (3)C11—C6—N1—C7156.9 (2)
C2—C3—C4—S11.5 (4)C1—C6—N1—O1170.41 (17)
C2—C1—C6—N1164.3 (2)C11—C6—N1—O145.82 (19)
S1—C1—C6—N117.6 (3)O3—C10—N2—C9174.5 (3)
C2—C1—C6—C1179.9 (3)C11—C10—N2—C94.2 (3)
S1—C1—C6—C1198.2 (2)O3—C10—N2—C124.5 (4)
O1—C8—C9—O259.0 (4)C11—C10—N2—C12176.8 (3)
C11—C8—C9—O2174.4 (3)O2—C9—N2—C10179.0 (3)
O1—C8—C9—N2121.1 (2)C8—C9—N2—C101.0 (3)
C11—C8—C9—N25.6 (3)O2—C9—N2—C122.0 (5)
O3—C10—C11—C8171.1 (2)C8—C9—N2—C12177.9 (3)
N2—C10—C11—C87.5 (3)C9—C8—O1—N178.9 (2)
O3—C10—C11—C678.2 (3)C11—C8—O1—N134.9 (2)
N2—C10—C11—C6103.1 (2)C7—N1—O1—C8169.8 (2)
O1—C8—C11—C10125.6 (2)C6—N1—O1—C851.1 (2)
C9—C8—C11—C107.7 (3)C3—C4—S1—C11.3 (2)
O1—C8—C11—C66.7 (2)C2—C1—S1—C40.8 (2)
C9—C8—C11—C6111.2 (2)C6—C1—S1—C4179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···S10.962.973.467 (3)114
C5—H5C···S1i0.962.913.808 (3)156
C8—H8···O3ii0.88 (2)2.56 (2)3.426 (3)168 (2)
C12—H12C···Cg1iii0.962.943.693 (3)137
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14N2O3S
Mr266.31
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)12.0318 (10), 14.6759 (9), 7.2635 (4)
V3)1282.57 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.52 × 0.48 × 0.43
Data collection
DiffractometerSTOE IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.895, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
12725, 2511, 2212
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 1.08
No. of reflections2511
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983), 1151 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···S10.962.973.467 (3)113.7
C5—H5C···S1i0.962.913.808 (3)156.0
C8—H8···O3ii0.88 (2)2.56 (2)3.426 (3)168 (2)
C12—H12C···Cg1iii0.962.943.693 (3)136.69
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlibes, R., Blanco, P., de March, P., Figueredo, M., Font, J., Alvarez-Larena, A. & Piniella, J. F. (2003). Tetrahedron Lett. 44, 523–525.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlack, D. C., Crozier, R. F. & Davis, V. C. (1975). Synthesis, pp. 205–221.  CrossRef CAS Google Scholar
First citationChiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003b). Tetrahedron Asymmetry, 14, 2717–2723.  Web of Science CrossRef CAS Google Scholar
First citationChiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Valveri, V., Mastino, A. & Romeo, G. (2003a). J. Med. Chem. 46, 3696–3702.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoutouli-Argyropoulou, E., Malamidou-Xenikaki, E., Stampelos, X. N. & Alexopoulou, I. N. (1997). Tetrahedron, 53, 707–718.  CrossRef CAS Web of Science Google Scholar
First citationDe Clercq (2002a). Biochim. Biophys. Acta, 1587, 258–275.  Google Scholar
First citationDe Clercq (2002b). Nat. Rev. Drug Discovery, 1, 13–25.  Google Scholar
First citationDe Clercq (2002c). Med. Res. Rev. 22, 531–535.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuisgen, R. (1960). "10 Jahre Fonds der Chemischen Industrie" Düsseldorf, p. 73; reprinted in Naturwiss. (1961). Rundschau, 4, 63.  Google Scholar
First citationKumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Eur. J. Med. Chem. 38, 613–619.  Web of Science CrossRef PubMed Google Scholar
First citationMalamidou-Xenikaki, E., Stampelos, X. N., Coutouli-Argyropoulou, E., Cardin, C. J., Teixera, S. & Kavounis, A. C. L. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 949–957.  CSD CrossRef Web of Science Google Scholar
First citationRichman, D. D. (2001). Nature (London), 410, 995–1001.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1102-o1103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds