organic compounds
2,5-Dimethyl-3-(3-methylthiophen-2-yl)perhydropyrrolo[3,4-d]isoxazole-4,6-dione
aDepartment of Chemistry, Faculty of Arts & Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Sciences, Gazi University, Ankara, Turkey, and cDepartment of Physics, Faculty of Arts & Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr
The 12H14N2O3S, exhibits intramolecular C—H⋯S and intermolecular C—H⋯S, C—H⋯O hydrogen bonds, C—S⋯N [S⋯N = 2.980 (2) Å, C—S⋯N = 145.78 (17)°] and C—H⋯π interactions; these interactions generate two C(5) chains and S(4), S(6) and R44(28) ring motifs. The isoxazole ring has an the N atom, which is the flap atom, is displaced by 0.261 (2) Å from the plane defined by the remaining four atoms. The dihedral angle between the succinimide and thiophene rings is 46.8 (2)°.
of the title compound, CRelated literature
For general background, see: Huisgen (1960); Black et al. (1975); Alibes et al. (2003); Kumar et al. (2003); Richman (2001); Chiacchio et al. (2003a,b). For ring motif details, see: Etter (1990); Bernstein et al. (1995). For related literature, see: Malamidou-Xenikaki et al. (1997); Coutouli-Argyropoulou et al. (1997); De Clercq (2002a,b,c).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808012993/gw2041sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012993/gw2041Isup2.hkl
N-Methyl-C-(-3-methylthiophen)nitrone was prepared from 3-methylthiophenecarbaldehyde, N-methyl-hydroxylamine hydrochloride and sodium carbonate in ethanol according to the procedure previously described (Malamidou-Xenikaki et al., 1997). This substance (3 mmol, 0.465 g) and N-methylmaleimide (3.3 mmol, 0.370 g) was dissolved in 50 ml benzene. The reaction mixture was refluxed for 9 h monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by
using mixtures of petroleum ether and ethyl acetate (1:1) as the eluant. The cis-isomer, (I), was recrystallized from CHCl3 / n-hexane (Fig. 6) (mp: 403–405 K).The aromatic and methyl H atoms included in calculated positions and refined using a riding model approximation with the constrains 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.0Ueq(C) for methyl. The methine H atoms were found in difference Fourier map and refined freely.
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H14N2O3S | F(000) = 560 |
Mr = 266.31 | Dx = 1.379 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 12725 reflections |
a = 12.0318 (10) Å | θ = 1.7–28.0° |
b = 14.6759 (9) Å | µ = 0.25 mm−1 |
c = 7.2635 (4) Å | T = 296 K |
V = 1282.57 (15) Å3 | Block, colorless |
Z = 4 | 0.52 × 0.48 × 0.43 mm |
STOE IPDS2 diffractometer | 2511 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2212 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.058 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.2° |
w–scan rotation method | h = −14→14 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −18→18 |
Tmin = 0.895, Tmax = 0.929 | l = −8→8 |
12725 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1351P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2511 reflections | Δρmax = 0.19 e Å−3 |
177 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1151 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (9) |
C12H14N2O3S | V = 1282.57 (15) Å3 |
Mr = 266.31 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 12.0318 (10) Å | µ = 0.25 mm−1 |
b = 14.6759 (9) Å | T = 296 K |
c = 7.2635 (4) Å | 0.52 × 0.48 × 0.43 mm |
STOE IPDS2 diffractometer | 2511 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2212 reflections with I > 2σ(I) |
Tmin = 0.895, Tmax = 0.929 | Rint = 0.058 |
12725 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.090 | Δρmax = 0.19 e Å−3 |
S = 1.08 | Δρmin = −0.16 e Å−3 |
2511 reflections | Absolute structure: Flack (1983), 1151 Friedel pairs |
177 parameters | Absolute structure parameter: 0.01 (9) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.76496 (19) | 0.41201 (15) | 0.2036 (3) | 0.0359 (5) | |
C2 | 0.8126 (2) | 0.40438 (19) | 0.0347 (4) | 0.0543 (7) | |
C3 | 0.9305 (2) | 0.4061 (2) | 0.0477 (5) | 0.0651 (9) | |
H3 | 0.9768 | 0.4008 | −0.0543 | 0.078* | |
C4 | 0.9688 (2) | 0.41604 (19) | 0.2179 (5) | 0.0622 (8) | |
H4 | 1.0438 | 0.4198 | 0.2479 | 0.075* | |
C5 | 0.7496 (4) | 0.3958 (3) | −0.1384 (4) | 0.1026 (14) | |
H5A | 0.6863 | 0.4356 | −0.1349 | 0.103* | |
H5B | 0.7249 | 0.3340 | −0.1529 | 0.103* | |
H5C | 0.7964 | 0.4122 | −0.2401 | 0.103* | |
C6 | 0.64389 (18) | 0.41050 (16) | 0.2458 (3) | 0.0369 (5) | |
C7 | 0.6216 (2) | 0.54462 (18) | 0.4463 (4) | 0.0608 (7) | |
H7A | 0.6049 | 0.5621 | 0.5707 | 0.061* | |
H7B | 0.5670 | 0.5701 | 0.3648 | 0.061* | |
H7C | 0.6939 | 0.5668 | 0.4133 | 0.061* | |
C8 | 0.5012 (2) | 0.32778 (16) | 0.4027 (4) | 0.0477 (6) | |
C9 | 0.5415 (2) | 0.26963 (18) | 0.5620 (4) | 0.0523 (6) | |
C10 | 0.6628 (2) | 0.24093 (17) | 0.3249 (4) | 0.0482 (7) | |
C11 | 0.5881 (2) | 0.31489 (17) | 0.2531 (4) | 0.0441 (5) | |
C12 | 0.6924 (3) | 0.1569 (2) | 0.6175 (6) | 0.0829 (10) | |
H12A | 0.6583 | 0.1543 | 0.7369 | 0.083* | |
H12B | 0.7685 | 0.1756 | 0.6301 | 0.083* | |
H12C | 0.6895 | 0.0978 | 0.5611 | 0.083* | |
N1 | 0.61980 (15) | 0.44503 (14) | 0.4315 (3) | 0.0409 (5) | |
N2 | 0.63330 (18) | 0.22216 (14) | 0.5031 (4) | 0.0546 (6) | |
O1 | 0.50134 (14) | 0.42160 (11) | 0.4512 (3) | 0.0543 (5) | |
O2 | 0.5015 (2) | 0.26507 (16) | 0.7130 (3) | 0.0813 (7) | |
O3 | 0.73562 (16) | 0.20182 (14) | 0.2435 (4) | 0.0697 (6) | |
S1 | 0.86334 (5) | 0.42104 (5) | 0.37501 (8) | 0.05480 (19) | |
H6 | 0.6036 (19) | 0.4459 (14) | 0.160 (3) | 0.028 (5)* | |
H8 | 0.432 (2) | 0.3135 (15) | 0.374 (4) | 0.045 (6)* | |
H11 | 0.561 (2) | 0.2974 (15) | 0.130 (4) | 0.037 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0367 (12) | 0.0340 (11) | 0.0370 (11) | −0.0006 (9) | 0.0001 (9) | 0.0022 (9) |
C2 | 0.0608 (16) | 0.0580 (16) | 0.0442 (15) | −0.0081 (13) | 0.0116 (13) | −0.0019 (12) |
C3 | 0.0514 (16) | 0.0625 (18) | 0.082 (2) | −0.0035 (14) | 0.0339 (17) | −0.0026 (16) |
C4 | 0.0357 (14) | 0.0555 (17) | 0.096 (2) | 0.0034 (12) | 0.0073 (14) | 0.0085 (17) |
C5 | 0.109 (3) | 0.151 (4) | 0.0478 (17) | −0.020 (3) | 0.011 (2) | −0.020 (2) |
C6 | 0.0326 (11) | 0.0403 (12) | 0.0378 (11) | 0.0036 (10) | −0.0012 (10) | 0.0071 (10) |
C7 | 0.0629 (17) | 0.0447 (14) | 0.0747 (18) | 0.0046 (13) | 0.0221 (14) | −0.0023 (13) |
C8 | 0.0284 (11) | 0.0511 (15) | 0.0634 (18) | −0.0013 (10) | 0.0011 (12) | 0.0058 (12) |
C9 | 0.0459 (13) | 0.0448 (14) | 0.0664 (17) | −0.0075 (12) | 0.0057 (13) | 0.0077 (12) |
C10 | 0.0356 (12) | 0.0355 (13) | 0.0735 (18) | −0.0046 (10) | −0.0001 (11) | −0.0017 (11) |
C11 | 0.0344 (11) | 0.0462 (14) | 0.0517 (15) | −0.0007 (10) | −0.0063 (11) | −0.0006 (11) |
C12 | 0.082 (2) | 0.061 (2) | 0.106 (3) | 0.0089 (17) | −0.010 (2) | 0.036 (2) |
N1 | 0.0343 (10) | 0.0412 (10) | 0.0472 (11) | 0.0010 (8) | 0.0110 (8) | 0.0021 (8) |
N2 | 0.0481 (13) | 0.0400 (11) | 0.0758 (16) | −0.0013 (9) | −0.0049 (11) | 0.0138 (11) |
O1 | 0.0368 (9) | 0.0461 (9) | 0.0800 (12) | 0.0083 (7) | 0.0194 (8) | 0.0056 (9) |
O2 | 0.0908 (17) | 0.0780 (15) | 0.0750 (14) | 0.0003 (13) | 0.0242 (13) | 0.0235 (13) |
O3 | 0.0463 (11) | 0.0520 (11) | 0.1108 (16) | 0.0067 (9) | 0.0152 (12) | −0.0069 (11) |
S1 | 0.0411 (3) | 0.0754 (4) | 0.0479 (3) | −0.0001 (3) | −0.0090 (3) | 0.0068 (4) |
C1—C2 | 1.358 (3) | C7—H7B | 0.9600 |
C1—C6 | 1.489 (3) | C7—H7C | 0.9600 |
C1—S1 | 1.723 (2) | C8—O1 | 1.421 (3) |
C2—C3 | 1.422 (4) | C8—C9 | 1.517 (4) |
C2—C5 | 1.474 (4) | C8—C11 | 1.519 (4) |
C3—C4 | 1.328 (5) | C8—H8 | 0.88 (3) |
C3—H3 | 0.9300 | C9—O2 | 1.200 (3) |
C4—S1 | 1.708 (3) | C9—N2 | 1.374 (4) |
C4—H4 | 0.9300 | C10—O3 | 1.202 (3) |
C5—H5A | 0.9600 | C10—N2 | 1.371 (4) |
C5—H5B | 0.9600 | C10—C11 | 1.503 (4) |
C5—H5C | 0.9600 | C11—H11 | 0.99 (3) |
C6—N1 | 1.470 (3) | C12—N2 | 1.454 (4) |
C6—C11 | 1.556 (3) | C12—H12A | 0.9600 |
C6—H6 | 0.95 (2) | C12—H12B | 0.9600 |
C7—N1 | 1.466 (3) | C12—H12C | 0.9600 |
C7—H7A | 0.9600 | N1—O1 | 1.473 (2) |
C2—C1—C6 | 126.7 (2) | O1—C8—C11 | 107.29 (19) |
C2—C1—S1 | 111.65 (19) | C9—C8—C11 | 104.8 (2) |
C6—C1—S1 | 121.65 (16) | O1—C8—H8 | 106.9 (15) |
C1—C2—C3 | 111.1 (2) | C9—C8—H8 | 110.5 (17) |
C1—C2—C5 | 124.1 (3) | C11—C8—H8 | 116.6 (19) |
C3—C2—C5 | 124.8 (3) | O2—C9—N2 | 125.4 (3) |
C4—C3—C2 | 114.2 (3) | O2—C9—C8 | 126.9 (3) |
C4—C3—H3 | 122.9 | N2—C9—C8 | 107.8 (2) |
C2—C3—H3 | 122.9 | O3—C10—N2 | 123.9 (3) |
C3—C4—S1 | 111.6 (2) | O3—C10—C11 | 127.6 (3) |
C3—C4—H4 | 124.2 | N2—C10—C11 | 108.5 (2) |
S1—C4—H4 | 124.2 | C10—C11—C8 | 104.7 (2) |
C2—C5—H5A | 109.5 | C10—C11—C6 | 113.9 (2) |
C2—C5—H5B | 109.5 | C8—C11—C6 | 102.1 (2) |
H5A—C5—H5B | 109.5 | C10—C11—H11 | 108.9 (14) |
C2—C5—H5C | 109.5 | C8—C11—H11 | 117.1 (15) |
H5A—C5—H5C | 109.5 | C6—C11—H11 | 110.3 (14) |
H5B—C5—H5C | 109.5 | N2—C12—H12A | 109.5 |
N1—C6—C1 | 112.12 (19) | N2—C12—H12B | 109.5 |
N1—C6—C11 | 101.21 (19) | H12A—C12—H12B | 109.5 |
C1—C6—C11 | 116.27 (19) | N2—C12—H12C | 109.5 |
N1—C6—H6 | 108.4 (13) | H12A—C12—H12C | 109.5 |
C1—C6—H6 | 110.9 (14) | H12B—C12—H12C | 109.5 |
C11—C6—H6 | 107.2 (13) | C7—N1—C6 | 114.11 (19) |
N1—C7—H7A | 109.5 | C7—N1—O1 | 103.87 (18) |
N1—C7—H7B | 109.5 | C6—N1—O1 | 101.51 (17) |
H7A—C7—H7B | 109.5 | C10—N2—C9 | 113.6 (2) |
N1—C7—H7C | 109.5 | C10—N2—C12 | 123.1 (3) |
H7A—C7—H7C | 109.5 | C9—N2—C12 | 123.3 (3) |
H7B—C7—H7C | 109.5 | C8—O1—N1 | 101.71 (16) |
O1—C8—C9 | 110.8 (2) | C4—S1—C1 | 91.40 (14) |
C6—C1—C2—C3 | −178.3 (2) | N1—C6—C11—C10 | −88.1 (2) |
S1—C1—C2—C3 | −0.1 (3) | C1—C6—C11—C10 | 33.7 (3) |
C6—C1—C2—C5 | 1.9 (5) | N1—C6—C11—C8 | 24.1 (2) |
S1—C1—C2—C5 | −179.9 (3) | C1—C6—C11—C8 | 145.9 (2) |
C1—C2—C3—C4 | −1.0 (4) | C1—C6—N1—C7 | 78.5 (3) |
C5—C2—C3—C4 | 178.8 (3) | C11—C6—N1—C7 | −156.9 (2) |
C2—C3—C4—S1 | 1.5 (4) | C1—C6—N1—O1 | −170.41 (17) |
C2—C1—C6—N1 | −164.3 (2) | C11—C6—N1—O1 | −45.82 (19) |
S1—C1—C6—N1 | 17.6 (3) | O3—C10—N2—C9 | −174.5 (3) |
C2—C1—C6—C11 | 79.9 (3) | C11—C10—N2—C9 | 4.2 (3) |
S1—C1—C6—C11 | −98.2 (2) | O3—C10—N2—C12 | 4.5 (4) |
O1—C8—C9—O2 | 59.0 (4) | C11—C10—N2—C12 | −176.8 (3) |
C11—C8—C9—O2 | 174.4 (3) | O2—C9—N2—C10 | −179.0 (3) |
O1—C8—C9—N2 | −121.1 (2) | C8—C9—N2—C10 | 1.0 (3) |
C11—C8—C9—N2 | −5.6 (3) | O2—C9—N2—C12 | 2.0 (5) |
O3—C10—C11—C8 | 171.1 (2) | C8—C9—N2—C12 | −177.9 (3) |
N2—C10—C11—C8 | −7.5 (3) | C9—C8—O1—N1 | 78.9 (2) |
O3—C10—C11—C6 | −78.2 (3) | C11—C8—O1—N1 | −34.9 (2) |
N2—C10—C11—C6 | 103.1 (2) | C7—N1—O1—C8 | 169.8 (2) |
O1—C8—C11—C10 | 125.6 (2) | C6—N1—O1—C8 | 51.1 (2) |
C9—C8—C11—C10 | 7.7 (3) | C3—C4—S1—C1 | −1.3 (2) |
O1—C8—C11—C6 | 6.7 (2) | C2—C1—S1—C4 | 0.8 (2) |
C9—C8—C11—C6 | −111.2 (2) | C6—C1—S1—C4 | 179.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7C···S1 | 0.96 | 2.97 | 3.467 (3) | 114 |
C5—H5C···S1i | 0.96 | 2.91 | 3.808 (3) | 156 |
C8—H8···O3ii | 0.88 (2) | 2.56 (2) | 3.426 (3) | 168 (2) |
C12—H12C···Cg1iii | 0.96 | 2.94 | 3.693 (3) | 137 |
Symmetry codes: (i) x, y, z−1; (ii) x−1/2, −y+1/2, z; (iii) −x+1/2, y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H14N2O3S |
Mr | 266.31 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 12.0318 (10), 14.6759 (9), 7.2635 (4) |
V (Å3) | 1282.57 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.52 × 0.48 × 0.43 |
Data collection | |
Diffractometer | STOE IPDS2 diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.895, 0.929 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12725, 2511, 2212 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.090, 1.08 |
No. of reflections | 2511 |
No. of parameters | 177 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.16 |
Absolute structure | Flack (1983), 1151 Friedel pairs |
Absolute structure parameter | 0.01 (9) |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7C···S1 | 0.96 | 2.97 | 3.467 (3) | 113.7 |
C5—H5C···S1i | 0.96 | 2.91 | 3.808 (3) | 156.0 |
C8—H8···O3ii | 0.88 (2) | 2.56 (2) | 3.426 (3) | 168 (2) |
C12—H12C···Cg1iii | 0.96 | 2.94 | 3.693 (3) | 136.69 |
Symmetry codes: (i) x, y, z−1; (ii) x−1/2, −y+1/2, z; (iii) −x+1/2, y+1/2, z+1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Alibes, R., Blanco, P., de March, P., Figueredo, M., Font, J., Alvarez-Larena, A. & Piniella, J. F. (2003). Tetrahedron Lett. 44, 523–525. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Black, D. C., Crozier, R. F. & Davis, V. C. (1975). Synthesis, pp. 205–221. CrossRef CAS Google Scholar
Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003b). Tetrahedron Asymmetry, 14, 2717–2723. Web of Science CrossRef CAS Google Scholar
Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Valveri, V., Mastino, A. & Romeo, G. (2003a). J. Med. Chem. 46, 3696–3702. Web of Science CrossRef PubMed CAS Google Scholar
Coutouli-Argyropoulou, E., Malamidou-Xenikaki, E., Stampelos, X. N. & Alexopoulou, I. N. (1997). Tetrahedron, 53, 707–718. CrossRef CAS Web of Science Google Scholar
De Clercq (2002a). Biochim. Biophys. Acta, 1587, 258–275. Google Scholar
De Clercq (2002b). Nat. Rev. Drug Discovery, 1, 13–25. Google Scholar
De Clercq (2002c). Med. Res. Rev. 22, 531–535. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Huisgen, R. (1960). "10 Jahre Fonds der Chemischen Industrie" Düsseldorf, p. 73; reprinted in Naturwiss. (1961). Rundschau, 4, 63. Google Scholar
Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Eur. J. Med. Chem. 38, 613–619. Web of Science CrossRef PubMed Google Scholar
Malamidou-Xenikaki, E., Stampelos, X. N., Coutouli-Argyropoulou, E., Cardin, C. J., Teixera, S. & Kavounis, A. C. L. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 949–957. CSD CrossRef Web of Science Google Scholar
Richman, D. D. (2001). Nature (London), 410, 995–1001. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A general principle for the synthesis of five-membered rings was introduced in 1960 as 1,3-dipolar cycloaddition and turned out to be remarkably widespread (Huisgen, 1960). Because of easy 1,3-dipolar cycloaddition reactions to alkenes, alkynes, isocyanates, isothiocyanates, phospharanes, sulphenes and sulphynl compounds, nitrones are the important intermediates in synthetic organic chemistry (Black et al., 1975). Especially, the nitrone-olefin 1,3-dipolar cycloaddition reaction is interesting since it can create three new contiguous stereogenic centers in a single step (Alibes et al., 2003). Both inter and intramolecular nitrone cycloaddition reactions have received attention because they are useful methods for the formation of heterocycles of biological active compounds (Kumar et al., 2003).
There has been an ever-increasing quest for modified nucleosides due to their potential applications in antiviral and anticancer therapies (Richman, 2001; De Clercq, 2002a,b,c). In a recent approach to modified nucleosides, the furanose ring has been replaced by other heterocyclic analogs (Chiacchio et al., 2003a). Among these N and O containing five-membered heterocycles, isoxazolidines, and isoxazoline derivatives have emerged as important candidates, and have been shown to display useful anticancer and antiviral properties (Chiacchio et al., 2003b). Consequently, synthetic studies on isoxazolidines have drawn considerable attention and 1,3-dipolar cycloadditions of nitrones afford the most straightforward route to isoxazolidines and we have described, the syntheses and crystal structure of, (I), 2,5-dimethyl-3-(3-methylthiophen-2-yl)-dihydro-2H-pyrrolo [3,4-d]isoxazole-4,6(5H,6aH)-dione.
The overall view and atom-labeling of the molecule of (I) are displayed in Figure 1. The hydrogen-bonding parameters are given in Table 1 and the packing arrangement of the molecules is illustrated in Figures 2–5. Compound is stabilized by intramolecular C—H···S hydrogen bond and S···N heteroatom interactions [in C1—S1···N; S···N = 2.980 (2) Å, C1—S1···N = 145.78 (17) °], which form S(4) and S(6) motifs, and intermolecular C—H···S and C—H···O hydrogen bonds and C—H···π interactions. As shown in Figures 2 and 3 the structure of the compound is made up of C8—H8···O3 and C5—H5c···S1 H-bonded polymeric bands of [C12H14N2O3S] molecules which are lined up nearly along the diagonal of the (100) (Fig. 2) and (001) (Fig. 3) planes. These polymeric C(5) chains are linked to each other and generate R44(28) ring motifs (Bernstein et al., 1995; Etter, 1990) (Fig. 4). The crystal packing is also stabilized by C12—H12c···Cg1 interactions (Fig. 5, Table 1). The dihedral angle between the succinimide and thiophen rings in [C12 H14 N2 O3 S] molecules is 46.8 (2) °.