organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperidinium 3-carb­­oxy-4-hy­droxy­benzene­sulfonate monohydrate

aCollege of Materials and Chemical Engineering, and Tianjin Key Laboratory of Fiber Modification & Functional Fiber, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: zhenhuanli1975@yahoo.com.cn

(Received 7 March 2008; accepted 12 May 2008; online 17 May 2008)

The asymmetric unit of the title compound, C5H12N+·C7H5O6S·H2O, contains a piperidinium cation, one 3-carb­oxy-4-hydroxy­benzene­sulfonate anion and one water mol­ecule. Inter­molecular O—H⋯O, O—H⋯S and N—H⋯O hydrogen bonds generate a three-dimensional hydrogen-bonded framework.

Related literature

For related literature, see: Smith et al. (2007[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645-3652.]).

[Scheme 1]

Experimental

Crystal data
  • C5H12N+·C7H5O6S·H2O

  • Mr = 321.34

  • Monoclinic, P 21 /n

  • a = 6.8895 (14) Å

  • b = 13.202 (3) Å

  • c = 16.255 (3) Å

  • β = 93.739 (3)°

  • V = 1475.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 294 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.961

  • 7480 measured reflections

  • 2602 independent reflections

  • 1966 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.04

  • 2602 reflections

  • 209 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O1 0.855 (9) 1.933 (10) 2.786 (2) 176 (2)
O7—H7A⋯O2i 0.859 (9) 1.912 (10) 2.770 (2) 177 (2)
N1—H1B⋯O5 0.88 (3) 2.55 (2) 2.983 (3) 110.6 (18)
N1—H1B⋯O7ii 0.88 (3) 2.16 (3) 2.996 (3) 157 (2)
N1—H1A⋯O2iii 0.92 (3) 1.90 (3) 2.807 (3) 170 (2)
O6—H6⋯O5 0.84 (3) 1.82 (3) 2.597 (2) 153 (3)
O4—H4⋯O7ii 0.85 (3) 1.75 (3) 2.601 (2) 179 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5-Sulfosalicylic acid (SSA) has six potential donor sites in the three substituent groups (the sulfonic acid, the carboxylic acid and the phenolic groups), and it gives mono-, di- and trianionic ligand species through deprotonation. The presence of numerous oxygen atoms in the substituent groups usually results in hydrogen-bonding associations, and the self-assembly process of crystallization often requires the incorporation of water molecules in the structures (Smith et al. 2007). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one piperidium cation cation, one 3-carboxyl-4-hydroxyl-benzenesulfonate anion and one water molecule (Fig. 1). The bond distances and angles in the cationic and anionic species are normal. An intramolecular O6—H6···O5 hydrogen bond is observed. The molecular packing (Fig. 2) is stabilized by intermolecular O—H···O, O—H···S and N—H···O hydrogen bonds (Table 1), These interactions generate a three-dimensional hydrogen-bonded framework structure.

Related literature top

For related literature, see: Smith et al. (2007).

Experimental top

2-Hydroxy-5-sulfobenzoic acid (2.18 g, 10 mmol), piperidine (0.85 g, 10 mmol) and H2O (20 ml) were loaded into a 50 ml roundbottom flask, and heated to dissolve the solid. Crystals of the title compound were obtained by slow evaporation of deionic H2O solution.

Refinement top

The H atoms of the water molecule, and the N-bound H atom H atom were located in a difference Fourier map, and refined with the O—H and N—H distance restraints of 0.86 (1) and 0.90 (1) Å, respectively. All other H atoms were positioned geometrically [O—H = 0.82 Å (hydroxyl), C—H = 0.93 Å (aromatic) and 0.96 Å (methyl)] and refined using a riding model, with Uiso(H) = 1.5Ueq(carrier) for hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmteric unit of title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. O—H···O and N—H···O hydrogen bonds are shown as dashed lines.
Piperidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C5H12N+·C7H5O6S·H2OF(000) = 680
Mr = 321.34Dx = 1.447 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2608 reflections
a = 6.8895 (14) Åθ = 3.0–25.1°
b = 13.202 (3) ŵ = 0.25 mm1
c = 16.255 (3) ÅT = 294 K
β = 93.739 (3)°Stick, colourless
V = 1475.3 (5) Å30.24 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2602 independent reflections
Radiation source: fine-focus sealed tube1966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.942, Tmax = 0.961k = 1515
7480 measured reflectionsl = 1910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.5098P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2602 reflectionsΔρmax = 0.26 e Å3
209 parametersΔρmin = 0.28 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0191 (15)
Crystal data top
C5H12N+·C7H5O6S·H2OV = 1475.3 (5) Å3
Mr = 321.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8895 (14) ŵ = 0.25 mm1
b = 13.202 (3) ÅT = 294 K
c = 16.255 (3) Å0.24 × 0.20 × 0.16 mm
β = 93.739 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2602 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1966 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.961Rint = 0.031
7480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
2602 reflectionsΔρmin = 0.28 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16322 (7)0.89594 (4)0.24082 (3)0.03289 (18)
O10.3120 (2)0.93486 (13)0.19039 (9)0.0516 (4)
O20.0297 (2)0.93311 (11)0.21241 (10)0.0483 (4)
O30.1658 (2)0.78755 (11)0.25065 (9)0.0479 (4)
O40.1660 (2)0.78250 (12)0.55005 (9)0.0464 (4)
H40.160 (4)0.752 (2)0.5956 (17)0.070*
O50.2197 (2)0.91602 (11)0.63192 (9)0.0462 (4)
O60.2977 (2)1.08950 (12)0.56636 (10)0.0487 (4)
H60.279 (4)1.044 (2)0.6018 (17)0.073*
N10.1423 (3)0.86332 (17)0.80518 (12)0.0481 (5)
H1A0.100 (3)0.928 (2)0.7936 (15)0.058*
H1B0.124 (4)0.8238 (18)0.7615 (16)0.058*
C10.2116 (3)0.95050 (14)0.33929 (12)0.0294 (4)
C20.1907 (3)0.89450 (15)0.40946 (12)0.0296 (4)
H20.15650.82650.40500.036*
C30.2204 (3)0.93869 (15)0.48727 (12)0.0310 (5)
C40.2711 (3)1.04151 (15)0.49318 (13)0.0349 (5)
C50.2947 (3)1.09718 (16)0.42200 (14)0.0387 (5)
H50.33021.16510.42580.046*
C60.2656 (3)1.05223 (15)0.34626 (13)0.0365 (5)
H6A0.28191.08990.29890.044*
C70.2020 (3)0.87879 (16)0.56285 (13)0.0345 (5)
C80.0182 (4)0.81764 (19)0.86596 (17)0.0630 (8)
H8A0.05100.74660.87320.076*
H8B0.11720.82210.84580.076*
C90.0467 (4)0.8713 (2)0.94665 (16)0.0691 (8)
H9A0.02990.83810.98680.083*
H9B0.00080.94050.94030.083*
C100.2573 (4)0.8719 (2)0.97778 (15)0.0629 (7)
H10A0.27220.91051.02860.075*
H10B0.30020.80310.98950.075*
C110.3795 (4)0.9178 (2)0.91490 (17)0.0648 (8)
H11A0.34610.98880.90810.078*
H11B0.51540.91360.93430.078*
C120.3510 (4)0.8657 (3)0.83399 (17)0.0726 (9)
H12A0.42420.90080.79370.087*
H12B0.40020.79700.83900.087*
O70.6418 (2)0.81286 (11)0.18899 (10)0.0456 (4)
H7A0.7460 (19)0.8483 (15)0.1972 (16)0.068*
H7B0.5375 (18)0.8480 (15)0.1880 (17)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0357 (3)0.0317 (3)0.0308 (3)0.0030 (2)0.0010 (2)0.0020 (2)
O10.0537 (10)0.0640 (11)0.0382 (9)0.0077 (8)0.0121 (7)0.0017 (8)
O20.0434 (9)0.0428 (9)0.0561 (10)0.0062 (7)0.0162 (7)0.0029 (7)
O30.0720 (11)0.0301 (8)0.0405 (9)0.0082 (7)0.0032 (8)0.0010 (7)
O40.0677 (11)0.0385 (9)0.0334 (9)0.0039 (8)0.0054 (8)0.0020 (7)
O50.0549 (10)0.0521 (10)0.0317 (9)0.0034 (8)0.0037 (7)0.0078 (7)
O60.0595 (10)0.0418 (10)0.0445 (10)0.0072 (8)0.0004 (8)0.0151 (7)
N10.0664 (14)0.0453 (12)0.0314 (10)0.0145 (10)0.0064 (9)0.0087 (9)
C10.0253 (10)0.0302 (11)0.0327 (11)0.0025 (8)0.0022 (8)0.0003 (8)
C20.0268 (10)0.0274 (10)0.0347 (11)0.0009 (8)0.0017 (8)0.0035 (9)
C30.0243 (10)0.0347 (11)0.0340 (11)0.0017 (8)0.0014 (8)0.0026 (9)
C40.0263 (10)0.0359 (12)0.0422 (13)0.0010 (9)0.0001 (9)0.0102 (10)
C50.0363 (12)0.0291 (11)0.0507 (14)0.0026 (9)0.0032 (10)0.0027 (10)
C60.0332 (11)0.0333 (12)0.0430 (13)0.0007 (9)0.0034 (9)0.0043 (10)
C70.0276 (11)0.0398 (13)0.0361 (12)0.0019 (9)0.0030 (9)0.0046 (10)
C80.0621 (17)0.0474 (15)0.0756 (19)0.0215 (13)0.0251 (14)0.0167 (13)
C90.0687 (19)0.092 (2)0.0485 (16)0.0086 (16)0.0178 (14)0.0167 (15)
C100.082 (2)0.0681 (18)0.0357 (14)0.0133 (15)0.0139 (13)0.0039 (12)
C110.0533 (16)0.0748 (19)0.0635 (18)0.0191 (14)0.0169 (13)0.0147 (14)
C120.0524 (17)0.107 (2)0.0592 (18)0.0259 (16)0.0114 (13)0.0104 (16)
O70.0447 (9)0.0437 (9)0.0486 (10)0.0015 (7)0.0040 (8)0.0046 (7)
Geometric parameters (Å, º) top
S1—O31.4398 (15)C5—C61.370 (3)
S1—O11.4478 (16)C5—H50.9300
S1—O21.4628 (15)C6—H6A0.9300
S1—C11.767 (2)C8—C91.492 (4)
O4—C71.309 (3)C8—H8A0.9700
O4—H40.85 (3)C8—H8B0.9700
O5—C71.224 (2)C9—C101.505 (4)
O6—C41.350 (2)C9—H9A0.9700
O6—H60.84 (3)C9—H9B0.9700
N1—C81.477 (3)C10—C111.494 (4)
N1—C121.483 (3)C10—H10A0.9700
N1—H1A0.92 (3)C10—H10B0.9700
N1—H1B0.88 (3)C11—C121.485 (4)
C1—C21.375 (3)C11—H11A0.9700
C1—C61.396 (3)C11—H11B0.9700
C2—C31.396 (3)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.403 (3)O7—H7A0.859 (9)
C3—C71.473 (3)O7—H7B0.855 (9)
C4—C51.389 (3)
O3—S1—O1114.30 (10)O5—C7—C3122.69 (19)
O3—S1—O2111.89 (9)O4—C7—C3114.48 (18)
O1—S1—O2111.36 (10)N1—C8—C9110.2 (2)
O3—S1—C1107.72 (9)N1—C8—H8A109.6
O1—S1—C1105.64 (9)C9—C8—H8A109.6
O2—S1—C1105.25 (9)N1—C8—H8B109.6
C7—O4—H4109.9 (19)C9—C8—H8B109.6
C4—O6—H6105 (2)H8A—C8—H8B108.1
C8—N1—C12112.9 (2)C8—C9—C10111.5 (2)
C8—N1—H1A109.1 (15)C8—C9—H9A109.3
C12—N1—H1A109.4 (16)C10—C9—H9A109.3
C8—N1—H1B103.9 (16)C8—C9—H9B109.3
C12—N1—H1B110.4 (16)C10—C9—H9B109.3
H1A—N1—H1B111 (2)H9A—C9—H9B108.0
C2—C1—C6119.45 (18)C11—C10—C9110.2 (2)
C2—C1—S1120.57 (15)C11—C10—H10A109.6
C6—C1—S1119.95 (15)C9—C10—H10A109.6
C1—C2—C3120.67 (18)C11—C10—H10B109.6
C1—C2—H2119.7C9—C10—H10B109.6
C3—C2—H2119.7H10A—C10—H10B108.1
C2—C3—C4119.16 (18)C12—C11—C10111.7 (2)
C2—C3—C7121.05 (18)C12—C11—H11A109.3
C4—C3—C7119.78 (18)C10—C11—H11A109.3
O6—C4—C5117.99 (18)C12—C11—H11B109.3
O6—C4—C3122.22 (19)C10—C11—H11B109.3
C5—C4—C3119.79 (19)H11A—C11—H11B107.9
C6—C5—C4120.09 (19)N1—C12—C11111.0 (2)
C6—C5—H5120.0N1—C12—H12A109.4
C4—C5—H5120.0C11—C12—H12A109.4
C5—C6—C1120.8 (2)N1—C12—H12B109.4
C5—C6—H6A119.6C11—C12—H12B109.4
C1—C6—H6A119.6H12A—C12—H12B108.0
O5—C7—O4122.83 (19)H7A—O7—H7B113.6 (15)
O3—S1—C1—C217.95 (18)C3—C4—C5—C61.0 (3)
O1—S1—C1—C2140.49 (16)C4—C5—C6—C10.2 (3)
O2—S1—C1—C2101.57 (16)C2—C1—C6—C51.1 (3)
O3—S1—C1—C6164.09 (15)S1—C1—C6—C5176.88 (15)
O1—S1—C1—C641.55 (18)C2—C3—C7—O5177.13 (18)
O2—S1—C1—C676.39 (17)C4—C3—C7—O53.7 (3)
C6—C1—C2—C30.9 (3)C2—C3—C7—O43.2 (3)
S1—C1—C2—C3177.12 (14)C4—C3—C7—O4175.97 (18)
C1—C2—C3—C40.3 (3)C12—N1—C8—C955.3 (3)
C1—C2—C3—C7178.85 (17)N1—C8—C9—C1055.7 (3)
C2—C3—C4—O6178.52 (17)C8—C9—C10—C1156.0 (3)
C7—C3—C4—O62.3 (3)C9—C10—C11—C1255.3 (3)
C2—C3—C4—C51.2 (3)C8—N1—C12—C1154.9 (3)
C7—C3—C4—C5177.93 (17)C10—C11—C12—N154.5 (3)
O6—C4—C5—C6178.76 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O10.86 (1)1.93 (1)2.786 (2)176 (2)
O7—H7A···O2i0.86 (1)1.91 (1)2.770 (2)177 (2)
N1—H1B···O50.88 (3)2.55 (2)2.983 (3)110.6 (18)
N1—H1B···O7ii0.88 (3)2.16 (3)2.996 (3)157 (2)
N1—H1A···O2iii0.92 (3)1.90 (3)2.807 (3)170 (2)
O6—H6···O50.84 (3)1.82 (3)2.597 (2)153 (3)
O4—H4···O7ii0.85 (3)1.75 (3)2.601 (2)179 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+1/2; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC5H12N+·C7H5O6S·H2O
Mr321.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)6.8895 (14), 13.202 (3), 16.255 (3)
β (°) 93.739 (3)
V3)1475.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7480, 2602, 1966
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections2602
No. of parameters209
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O10.855 (9)1.933 (10)2.786 (2)176 (2)
O7—H7A···O2i0.859 (9)1.912 (10)2.770 (2)177 (2)
N1—H1B···O50.88 (3)2.55 (2)2.983 (3)110.6 (18)
N1—H1B···O7ii0.88 (3)2.16 (3)2.996 (3)157 (2)
N1—H1A···O2iii0.92 (3)1.90 (3)2.807 (3)170 (2)
O6—H6···O50.84 (3)1.82 (3)2.597 (2)153 (3)
O4—H4···O7ii0.85 (3)1.75 (3)2.601 (2)179 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+1/2; (iii) x, y+2, z+1.
 

Acknowledgements

The authors are grateful for the financial support of Tianjin Polytechnic University (029623 and 029817) and the Natural Science Foundation of Tianjin Education Committee (20070607).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645–3652.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds