organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­pyridinium 4-hydr­­oxy-3-iodo­naphthalene-1-sulfonate dihydrate

aBasic Experiment Teaching Center, Henan University, Kaifeng 475001, People's Republic of China
*Correspondence e-mail: lijiehd@163.com

(Received 12 April 2008; accepted 11 May 2008; online 17 May 2008)

In the hydrated title salt, C5H7N2+·C10H6IO4S·2H2O, the component species are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming an infinite three-dimensional framework.

Related literature

For background, see: Li (2007[Li, J. (2007). Acta Cryst. E63, o4171.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C10H6IO4S·2H2O

  • Mr = 480.27

  • Monoclinic, P 21 /n

  • a = 15.0219 (6) Å

  • b = 6.9917 (3) Å

  • c = 18.0729 (7) Å

  • β = 110.868 (1)°

  • V = 1773.66 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 296 (2) K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.720, Tmax = 0.828

  • 17926 measured reflections

  • 3484 independent reflections

  • 3128 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.08

  • 3484 reflections

  • 258 parameters

  • 34 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2W 0.882 (10) 1.853 (13) 2.725 (4) 170 (4)
N2—H2B⋯O1 0.886 (10) 2.232 (16) 3.085 (3) 162 (4)
N2—H2C⋯O2i 0.888 (10) 2.179 (11) 3.064 (4) 175 (3)
O4—H4⋯O1W 0.843 (10) 1.89 (2) 2.655 (3) 150 (4)
O1W—H1WB⋯O3ii 0.847 (10) 1.983 (12) 2.822 (3) 171 (4)
O1W—H1WA⋯O4iii 0.851 (10) 2.158 (15) 2.944 (3) 153 (3)
O2W—H2WA⋯O1iv 0.853 (10) 1.981 (12) 2.820 (3) 167 (3)
O2W—H2WB⋯O2v 0.856 (10) 1.944 (11) 2.796 (3) 173 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) -x+1, -y, -z; (v) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

This work continues our previous synthetic and structural studies of the hydrogen bonding interactions between various organic acids and substituted pyridines (Li, 2007).

The asymmetric unit of the title salt, (I), is composed of one 3-aminopyridinium cation, one 8-hydroxy-7-iodo-5-quinolinesulfonate anion and two water molecules (Fig. 1). One water molecule (O1W), acting as a hydrogen bonding donor interacts with the hydroxy oxygen (O4) acting as hydrogen bonding acceptor (Table 1). The other water molecule (O2W) and the 3-aminopyridinium cation are linked by a N1—H1A···O2W hydrogen bond. Moreover, the cation and anion are linked together by a N2—H2B···O1 hydrogen bond. Overall, an infinite three-dimensional framework results (Fig. 2).

Related literature top

For background, see: Li (2007).

Experimental top

A 5-ml ethanol solution of 3-aminopyridine (1.0 mmol, 0.094 g) was added to a 20-ml hot aqueous solution of 8-hydroxy-7-iodo-5-quinolinesulfonic acid (1.0 mmol, 0.351 g) and the mixture was stirred for 20 minutes at 373 K. Then the solution was filtered, and the filtrate was kept at the room temperature. After two weeks, yellow blocks of (I) were obtained.

Refinement top

The N- and O-bonded H atoms bonded were located in a difference synthesis and refined isotropically with N—H = 0.89 (1), O—H = 0.85 (1) and H···H = 1.34 (1) Å, respectively. All the remaining H atoms were placed in calculated positions, with C—H = 0.93Å and were refined as riding with Uiso = 1.2Ueq(C). This refinement scheme results in a short intramolecular H4···H6 contact of 1.71Å, although H4 participates in a plausible intermolecular hydrogen bond: thus the location of H4 should be regarded as less certain. Other placement schemes for H4 appear to lead to disordered hydrogen bond arrangements.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the packing of (I) viewed along the direction [010]. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
3-Aminopyridinium 4-hydroxy-3-iodonaphthalene-1-sulfonate dihydrate top
Crystal data top
C5H7N2+·C10H6IO4S·2H2OF(000) = 952
Mr = 480.27Dx = 1.799 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9093 reflections
a = 15.0219 (6) Åθ = 2.4–27.7°
b = 6.9917 (3) ŵ = 1.96 mm1
c = 18.0729 (7) ÅT = 296 K
β = 110.868 (1)°Block, yellow
V = 1773.66 (12) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube3128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.720, Tmax = 0.828k = 88
17926 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.4355P]
where P = (Fo2 + 2Fc2)/3
3484 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.71 e Å3
34 restraintsΔρmin = 0.96 e Å3
Crystal data top
C5H7N2+·C10H6IO4S·2H2OV = 1773.66 (12) Å3
Mr = 480.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0219 (6) ŵ = 1.96 mm1
b = 6.9917 (3) ÅT = 296 K
c = 18.0729 (7) Å0.18 × 0.12 × 0.10 mm
β = 110.868 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3484 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3128 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.828Rint = 0.027
17926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02534 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.71 e Å3
3484 reflectionsΔρmin = 0.96 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7208 (2)0.1965 (4)0.01736 (18)0.0486 (7)
H1A0.6708 (18)0.233 (5)0.0582 (16)0.056 (11)*
N20.7670 (2)0.0577 (5)0.18478 (18)0.0614 (8)
H2B0.7069 (11)0.034 (6)0.179 (2)0.065 (11)*
H2C0.8150 (18)0.008 (5)0.2246 (15)0.059 (10)*
C110.8061 (3)0.1948 (5)0.0234 (2)0.0564 (9)
H11A0.81350.22770.07080.068*
C120.8834 (2)0.1434 (5)0.0416 (2)0.0577 (9)
H12A0.94380.14050.03840.069*
C130.8718 (2)0.0965 (5)0.1112 (2)0.0541 (8)
H13A0.92450.06180.15500.065*
C140.7811 (2)0.1006 (4)0.11680 (19)0.0433 (7)
C150.7058 (2)0.1516 (4)0.0493 (2)0.0447 (7)
H15A0.64430.15470.05020.054*
S10.51967 (4)0.21097 (9)0.19020 (4)0.03081 (15)
I10.159514 (12)0.20253 (3)0.230170 (10)0.03822 (8)
O10.54976 (13)0.0659 (3)0.14622 (13)0.0469 (5)
O20.55842 (13)0.3982 (3)0.18257 (13)0.0469 (5)
O30.53822 (15)0.1580 (4)0.27109 (13)0.0570 (6)
O40.10004 (13)0.2998 (3)0.04865 (12)0.0393 (5)
H40.080 (3)0.315 (6)0.0008 (7)0.071 (13)*
C10.39401 (17)0.2327 (4)0.14385 (15)0.0273 (5)
C20.33925 (18)0.2092 (3)0.18943 (15)0.0285 (5)
H2A0.36820.17840.24270.034*
C30.24002 (18)0.2308 (4)0.15712 (15)0.0281 (5)
C40.19533 (17)0.2770 (3)0.07873 (15)0.0275 (5)
C50.25099 (18)0.3043 (3)0.03008 (15)0.0275 (5)
C60.20225 (16)0.3533 (3)0.04661 (13)0.0230 (5)
H60.13640.36710.06550.028*
C70.2508 (2)0.3803 (4)0.09292 (16)0.0399 (6)
H70.21790.41400.14540.048*
C80.3502 (2)0.3611 (5)0.06744 (17)0.0423 (7)
H80.38180.38190.10270.051*
C90.4003 (2)0.3120 (4)0.00897 (17)0.0371 (6)
H90.46610.29850.02620.045*
C100.35128 (18)0.2815 (3)0.06225 (15)0.0275 (5)
O1W0.02157 (17)0.3572 (4)0.09765 (13)0.0532 (6)
H1WA0.038 (2)0.473 (2)0.095 (2)0.060 (5)*
H1WB0.002 (2)0.359 (4)0.1337 (16)0.056 (5)*
O2W0.55451 (16)0.2736 (3)0.13855 (17)0.0555 (6)
H2WA0.5162 (18)0.179 (3)0.147 (2)0.059 (11)*
H2WB0.5167 (18)0.370 (3)0.151 (2)0.072 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0482 (16)0.0385 (14)0.0518 (16)0.0003 (12)0.0091 (13)0.0011 (12)
N20.0386 (16)0.090 (2)0.0548 (17)0.0127 (16)0.0150 (14)0.0124 (16)
C110.063 (2)0.0483 (19)0.064 (2)0.0091 (16)0.0302 (19)0.0008 (16)
C120.0395 (17)0.060 (2)0.080 (3)0.0068 (15)0.0282 (18)0.0007 (19)
C130.0307 (15)0.058 (2)0.068 (2)0.0012 (14)0.0112 (15)0.0044 (17)
C140.0321 (14)0.0431 (16)0.0531 (17)0.0027 (12)0.0129 (13)0.0010 (14)
C150.0316 (14)0.0430 (16)0.0580 (19)0.0040 (12)0.0142 (14)0.0016 (14)
S10.0198 (3)0.0380 (3)0.0329 (3)0.0003 (2)0.0073 (2)0.0048 (3)
I10.03151 (12)0.05175 (14)0.03694 (12)0.00166 (7)0.01898 (8)0.00622 (8)
O10.0299 (10)0.0489 (12)0.0630 (13)0.0051 (9)0.0180 (9)0.0058 (10)
O20.0289 (10)0.0424 (11)0.0616 (13)0.0083 (9)0.0066 (9)0.0054 (10)
O30.0303 (11)0.0986 (19)0.0378 (11)0.0063 (11)0.0069 (9)0.0226 (12)
O40.0214 (9)0.0645 (14)0.0313 (11)0.0048 (8)0.0084 (8)0.0037 (9)
C10.0206 (11)0.0297 (12)0.0318 (13)0.0004 (9)0.0095 (10)0.0015 (10)
C20.0258 (12)0.0323 (13)0.0261 (12)0.0011 (10)0.0078 (10)0.0036 (10)
C30.0249 (12)0.0336 (13)0.0297 (12)0.0003 (10)0.0144 (10)0.0007 (10)
C40.0214 (12)0.0318 (12)0.0297 (12)0.0013 (10)0.0095 (10)0.0014 (10)
C50.0255 (12)0.0278 (12)0.0296 (12)0.0006 (9)0.0101 (10)0.0019 (9)
C60.0162 (10)0.0326 (12)0.0178 (10)0.0005 (9)0.0030 (8)0.0016 (9)
C70.0390 (15)0.0479 (16)0.0289 (13)0.0033 (13)0.0075 (11)0.0030 (12)
C80.0375 (15)0.0600 (18)0.0342 (14)0.0037 (14)0.0188 (12)0.0049 (13)
C90.0274 (13)0.0495 (16)0.0362 (14)0.0016 (12)0.0135 (12)0.0028 (12)
C100.0248 (12)0.0285 (12)0.0288 (12)0.0015 (9)0.0092 (10)0.0006 (10)
O1W0.0462 (12)0.0741 (16)0.0393 (12)0.0129 (12)0.0151 (10)0.0012 (11)
O2W0.0377 (12)0.0424 (13)0.0792 (18)0.0006 (10)0.0122 (12)0.0025 (12)
Geometric parameters (Å, º) top
N1—C111.325 (5)C1—C21.366 (4)
N1—C151.339 (4)C1—C101.424 (4)
N1—H1A0.882 (10)C2—C31.402 (4)
N2—C141.353 (4)C2—H2A0.9300
N2—H2B0.886 (10)C3—C41.373 (4)
N2—H2C0.888 (10)C4—C51.425 (4)
C11—C121.374 (5)C5—C61.361 (3)
C11—H11A0.9300C5—C101.417 (4)
C12—C131.369 (5)C6—C71.305 (4)
C12—H12A0.9300C6—H60.9300
C13—C141.403 (4)C7—C81.404 (4)
C13—H13A0.9300C7—H70.9300
C14—C151.382 (4)C8—C91.360 (4)
C15—H15A0.9300C8—H80.9300
S1—O31.436 (2)C9—C101.421 (4)
S1—O11.456 (2)C9—H90.9300
S1—O21.459 (2)O1W—H1WA0.851 (10)
S1—C11.778 (2)O1W—H1WB0.847 (10)
I1—C32.093 (2)O2W—H2WA0.853 (10)
O4—C41.347 (3)O2W—H2WB0.856 (10)
O4—H40.843 (10)
C11—N1—C15123.4 (3)C10—C1—S1121.29 (19)
C11—N1—H1A120 (3)C1—C2—C3121.0 (2)
C15—N1—H1A117 (3)C1—C2—H2A119.5
C14—N2—H2B115 (2)C3—C2—H2A119.5
C14—N2—H2C119 (2)C4—C3—C2120.8 (2)
H2B—N2—H2C122 (4)C4—C3—I1119.55 (18)
N1—C11—C12118.6 (4)C2—C3—I1119.64 (19)
N1—C11—H11A120.7O4—C4—C3120.2 (2)
C12—C11—H11A120.7O4—C4—C5120.5 (2)
C13—C12—C11120.3 (3)C3—C4—C5119.3 (2)
C13—C12—H12A119.9C6—C5—C10123.6 (2)
C11—C12—H12A119.9C6—C5—C4116.2 (2)
C12—C13—C14120.4 (3)C10—C5—C4120.2 (2)
C12—C13—H13A119.8C7—C6—C5118.0 (2)
C14—C13—H13A119.8C7—C6—H6121.0
N2—C14—C15121.0 (3)C5—C6—H6121.0
N2—C14—C13122.1 (3)C6—C7—C8123.2 (3)
C15—C14—C13116.9 (3)C6—C7—H7118.4
N1—C15—C14120.5 (3)C8—C7—H7118.4
N1—C15—H15A119.8C9—C8—C7119.7 (3)
C14—C15—H15A119.8C9—C8—H8120.1
O3—S1—O1113.00 (15)C7—C8—H8120.1
O3—S1—O2112.85 (15)C8—C9—C10119.6 (3)
O1—S1—O2111.19 (13)C8—C9—H9120.2
O3—S1—C1106.86 (12)C10—C9—H9120.2
O1—S1—C1106.64 (12)C5—C10—C9115.9 (2)
O2—S1—C1105.73 (12)C5—C10—C1118.2 (2)
C4—O4—H4111 (3)C9—C10—C1125.9 (2)
C2—C1—C10120.5 (2)H1WA—O1W—H1WB103.8 (15)
C2—C1—S1118.17 (19)H2WA—O2W—H2WB102.6 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2W0.88 (1)1.85 (1)2.725 (4)170 (4)
N2—H2B···O10.89 (1)2.23 (2)3.085 (3)162 (4)
N2—H2C···O2i0.89 (1)2.18 (1)3.064 (4)175 (3)
O4—H4···O1W0.84 (1)1.89 (2)2.655 (3)150 (4)
O1W—H1WB···O3ii0.85 (1)1.98 (1)2.822 (3)171 (4)
O1W—H1WA···O4iii0.85 (1)2.16 (2)2.944 (3)153 (3)
O2W—H2WA···O1iv0.85 (1)1.98 (1)2.820 (3)167 (3)
O2W—H2WB···O2v0.86 (1)1.94 (1)2.796 (3)173 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C10H6IO4S·2H2O
Mr480.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.0219 (6), 6.9917 (3), 18.0729 (7)
β (°) 110.868 (1)
V3)1773.66 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.720, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
17926, 3484, 3128
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.08
No. of reflections3484
No. of parameters258
No. of restraints34
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.96

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2W0.882 (10)1.853 (13)2.725 (4)170 (4)
N2—H2B···O10.886 (10)2.232 (16)3.085 (3)162 (4)
N2—H2C···O2i0.888 (10)2.179 (11)3.064 (4)175 (3)
O4—H4···O1W0.843 (10)1.89 (2)2.655 (3)150 (4)
O1W—H1WB···O3ii0.847 (10)1.983 (12)2.822 (3)171 (4)
O1W—H1WA···O4iii0.851 (10)2.158 (15)2.944 (3)153 (3)
O2W—H2WA···O1iv0.853 (10)1.981 (12)2.820 (3)167 (3)
O2W—H2WB···O2v0.856 (10)1.944 (11)2.796 (3)173 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z.
 

References

First citationBruker (2001). SADABS, SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2007). Acta Cryst. E63, o4171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds