organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,4′S)-4-(tert-Butyl­di­methyl­silan­­oxy)-1-[2,2-di­methyl-3-(p-tolyl­sulfon­yl)-1,3-oxazolidin-4-yl]but-2-yn-1-ol

aFachbereich Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@udo.edu

(Received 22 April 2008; accepted 16 May 2008; online 30 May 2008)

The chiral title compound, C22H35NO5SSi, is a precursor of novel furan­omycin derivatives. It crystallizes with two molecules in the asymmetric unit; these show different conformations of the silyl substitutent, as indicated by the Si—O—C—C torsion angles of 41.4 (7) and −84.5 (5)° in the two mol­ecules. The anti configuration of the adjacent stereogenic centers is consistent with the Felkin–Anh model. Each of the two crystallographically independent mol­ecules is connected with a neighbouring mol­ecule of the same type via two symmetry-equivalent O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Anh & Eisenstein (1977[Anh, N. T. & Eisenstein, O. (1977). Nouv. J. Chim. 1, 61-70.]); Chérest et al. (1968[Chérest, M., Felkin, H. & Prudent, N. (1968). Tetrahedron Lett. 9, 2199-2204.]); Deutsch et al. (2008[Deutsch, C., Lipshutz, B. H. & Krause, N. (2008). J. Am. Chem. Soc. In preparation.]); Erdsack & Krause (2008[Erdsack, J. & Krause, N. (2008). Eur. J. Org. Chem. In preparation.]); Garner & Park (1987[Garner, P. & Park, J. M. (1987). J. Org. Chem. 52, 2361-2364.]); Hoffmann-Röder & Krause (2001[Hoffmann-Röder, A. & Krause, N. (2001). Org. Lett. 3, 2537-2538.]); Kim & Rhee (2000[Kim, G. & Rhee, H. (2000). J. Kor. Chem. Soc. 44, 30-36.]).

[Scheme 1]

Experimental

Crystal data
  • C22H35NO5SSi

  • Mr = 453.66

  • Monoclinic, C 2

  • a = 26.283 (5) Å

  • b = 11.335 (2) Å

  • c = 19.219 (4) Å

  • β = 121.40 (3)°

  • V = 4887 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 (1) K

  • 0.10 × 0.08 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 8353 measured reflections

  • 8353 independent reflections

  • 3487 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.03

  • 8353 reflections

  • 559 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3636 Friedel pairs

  • Flack parameter: −0.09 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.84 2.01 2.828 (4) 164
O4′—H4′⋯O2′ii 0.84 2.06 2.851 (4) 157
Symmetry codes: (i) -x, y, -z; (ii) -x+1, y, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326, New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), is a precursor of novel furanomycin derivatives using the gold-catalyzed cyclization of α-hydroxyallenes (Hoffmann-Röder & Krause, 2001; Erdsack & Krause, 2008), which are prepared by SN2' substitution of propargylic carbonates with catalytic copper hydride (Deutsch et al., 2008). The compound (I) was synthesized by nucleophilic acetylide addition to the tosyl protected analogue of Garner's aldehyde (Kim & Rhee, 2000; Garner & Park, 1987) under non-chelating conditions. A crystal structure determination of (I) has now been carried out to establish the anti configuration of the adjacent stereocenters. Figs. 1 and 2 show that the relative configuration of C12 and C13 in the first molecule and C12' and C13' in the second molecule are as expected.

The compound crystallizes in pairs of molecules, which are different concerning the conformation of the silyl substitutent, as indicated by the Si—O5—C16—C15 and Si'—O5'—C16'—C15' torsion angles of 41.4 (7)° and -84.5 (5)°, respectively. The torsion angles C17—Si—O5—C16 [155.8 (4)°] and C17'—Si'—O5'—C16' [169.9 (4)°] also differ significantly. The preferred gauche conformation of the substitutents O4 and C11 along the newly formed C12—C13 bond is in accordance with the Felkin-Anh model (Chérest et al., 1968; Anh & Eisenstein, 1977). The configuration of the stereogenic centers in (I) (C12 S and C13 R) was assigned based on the starting material (L-serine).

In the crystal, pairs of symmetry equivalent molecules are linked by pairs of O—H···O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Anh & Eisenstein (1977); Chérest et al. (1968); Deutsch et al. (2008); Erdsack & Krause (2008); Garner & Park (1987); Hoffmann-Röder & Krause (2001); Kim & Rhee (2000).

Experimental top

In an oven-dried three-necked 250-ml-flask equipped with a magnetic stirring bar and nitrogen inlet, tert-butyldimethylprop-2-ynyloxysilane (4.68 g, 27.5 mmol) was dissolved in anhydrous THF (95 ml) under argon. After cooling to 243 K, n-BuLi (2.5 M in hexane, 11.0 ml, 27.5 mmol) was added dropwise and stirring was continued for 15 min. Hexamethylphosphoramide (4.78 ml, 27.5 mmol) was added and the solution was cooled to 188 K. After 5 min with stirring, a solution of (S)-2,2-dimethyl-3-(toluene-4-sulfonyl)-oxazolidine-4-carbaldehyde (3.9 g, 13.8 mmol) in anhydrous THF (20 ml) was added slowly by syringe on the inner surface of the flask. After 45 min with stirring at 188 K, TLC showed the complete conversion of starting material. After 60 min total time of stirring, the mixture was poured into aq. sat. NH4Cl (250 ml). The organic phase was separated and the residue was washed with diethyl ether (3 × 100 ml). The combined organic layers were washed with brine, dried (MgSO4), filtered, and the solvent was evaporated. The residue was purified by column chromatography (silica gel, isohexane-EtOAc 85:15 7:3) to give the title compound (I) (5.13 g, 82%) as a colourless solid. A small sample was recrystallized from isohexane to give colourless blocks and plates of (I) suitable for X-ray analysis; mp 388 K (isohexane); [α]21D -38.6 (c 1.20, CHCl3); Rf = 0.66 (isohexane-EtOAc 7:3); IR (KBr): 3514, 2984, 2952, 2928, 2885, 2857, 1599, 1471, 1461, 1385, 1339, 1254, 1205, 1159, 1090, 1030, 837, 815, 779, 660, 594 cm-1; 1H NMR (400 MHz, CDCl3): δ (p.p.m.) = 7.73 (d, J = 8.2 Hz, 2 H), 7.29 (d, J = 8.1 Hz, 2 H), 4.73 (d, J = 3.9 Hz, 1 H), 4.30 (d, J = 1.4 Hz, 2 H), 4.20 (dd, J = 4.0, 9.3 Hz, 1 H), 3.96 (dd, J = 7.1, 9.2 Hz, 1 H), 3.79 (m, 1 H), 3.07 (d, J = 6.1 Hz, 1 H), 2.40 (s, 3 H), 1.68 (s, 3 H), 1.50 (s, 3 H), 0.87 (s, 9 H), 0.08 (s, 6 H); 13C NMR (100 MHz, CDCl3): δ (p.p.m.) = 143.8, 136.8, 129.7, 127.5, 99.2, 85.3, 82.0, 65.0, 62.6, 62.5, 51.5, 28.3, 25.7, 24.7, 21.4, 18.2, -5.3; HRMS (ESI): m/z [M + H]+ calcd for C22H36NO532S28Si: 454.2078; found 454.2072.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.95–1.00 and O—H = 0.84 Å and refined as riding, with Uiso= 1.5Ueq for the methyl groups and Uiso= 1.2Ueq for the remaining H positions; the methyl groups were allowed to rotate but not to tip to best fit the enectron density.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : The molecular structure of molecule 1 in (I) with displacement ellipsoids for the non-H atoms shown at the 30% probability level.
[Figure 2] Fig. 2. : The molecular structure of molecule 2 in (I) with displacement ellipsoids for the non-H atoms shown at the 30% probability level.
(1R,4'S)-4-(tert-Butyldimethylsilanoxy)- 1-[2,2-dimethyl-3-(p-tolylsulfonyl)-1,3-oxazolidin-4-yl]but-2-yn-1-ol top
Crystal data top
C22H35NO5SSiF(000) = 1952
Mr = 453.66Dx = 1.233 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 20719 reflections
a = 26.283 (5) Åθ = 2.6–25.3°
b = 11.335 (2) ŵ = 0.21 mm1
c = 19.219 (4) ÅT = 173 K
β = 121.40 (3)°Plate, colourless
V = 4887 (2) Å30.10 × 0.08 × 0.01 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3487 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.3°, θmin = 2.6°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 3131
286 frames via ω–rotation (Δω=1°) and two times 120 s per frame (3 sets at different κ–angles) scansk = 1213
8353 measured reflectionsl = 2322
8353 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.087 [1.0exp(6.50(sinθ/λ)2)]/[σ2(Fo2)]
S = 1.03(Δ/σ)max = 0.004
8353 reflectionsΔρmax = 0.18 e Å3
559 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 3636 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (7)
Crystal data top
C22H35NO5SSiV = 4887 (2) Å3
Mr = 453.66Z = 8
Monoclinic, C2Mo Kα radiation
a = 26.283 (5) ŵ = 0.21 mm1
b = 11.335 (2) ÅT = 173 K
c = 19.219 (4) Å0.10 × 0.08 × 0.01 mm
β = 121.40 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3487 reflections with I > 2σ(I)
8353 measured reflectionsRint = 0.035
8353 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.18 e Å3
S = 1.03Δρmin = 0.20 e Å3
8353 reflectionsAbsolute structure: Flack (1983), 3636 Friedel pairs
559 parametersAbsolute structure parameter: 0.09 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si0.18831 (6)0.75264 (12)0.35551 (8)0.0440 (4)
S0.03335 (5)0.23627 (11)0.13817 (6)0.0309 (3)
O10.02908 (13)0.1117 (3)0.12092 (17)0.0387 (8)
O20.01544 (11)0.3124 (3)0.08511 (16)0.0360 (8)
O30.18264 (12)0.2966 (3)0.15322 (18)0.0394 (8)
O40.08605 (14)0.4847 (3)0.03241 (17)0.0401 (8)
H40.06740.42490.00530.048*
O50.15140 (15)0.8445 (3)0.27897 (18)0.0514 (10)
N0.09151 (13)0.2865 (3)0.13766 (19)0.0283 (9)
C10.04472 (17)0.2563 (4)0.2366 (2)0.0319 (11)
C20.03227 (18)0.3650 (4)0.2570 (3)0.0344 (12)
H2B0.01940.42880.21960.041*
C30.0387 (2)0.3797 (4)0.3326 (3)0.0408 (13)
H3A0.03010.45440.34660.049*
C40.0573 (2)0.2888 (5)0.3882 (3)0.0398 (13)
C50.06901 (19)0.1796 (5)0.3667 (3)0.0386 (13)
H5A0.08100.11550.40380.046*
C60.06346 (17)0.1633 (4)0.2923 (3)0.0330 (11)
H6A0.07240.08870.27860.040*
C70.0632 (2)0.3055 (5)0.4703 (3)0.0537 (15)
H7A0.03240.25950.47210.081*
H7B0.05840.38930.47830.081*
H7C0.10270.27870.51350.081*
C80.14300 (19)0.2100 (4)0.1522 (3)0.0355 (12)
C90.1269 (2)0.1295 (4)0.0813 (3)0.0439 (13)
H9A0.10740.17530.03060.066*
H9B0.09970.06800.07850.066*
H9C0.16320.09290.08860.066*
C100.17202 (19)0.1457 (4)0.2342 (3)0.0408 (13)
H10A0.18200.20280.27780.061*
H10B0.20840.10610.24430.061*
H10C0.14420.08700.23300.061*
C110.17841 (18)0.3992 (4)0.1934 (3)0.0406 (13)
H11B0.19110.47050.17660.049*
H11C0.20370.39060.25330.049*
C120.11234 (17)0.4078 (4)0.1666 (3)0.0290 (11)
H12B0.10860.42580.21470.035*
C130.07738 (19)0.4990 (4)0.0990 (3)0.0314 (11)
H13A0.03390.49150.07890.038*
C140.0980 (2)0.6178 (4)0.1337 (3)0.0372 (12)
C150.1154 (2)0.7111 (5)0.1641 (3)0.0435 (14)
C160.1359 (3)0.8307 (4)0.1969 (3)0.0614 (17)
H16A0.17100.85040.19290.074*
H16B0.10390.88770.16260.074*
C170.2209 (2)0.8472 (4)0.4478 (3)0.0461 (13)
C180.2571 (2)0.7734 (5)0.5270 (3)0.0722 (18)
H18A0.27470.82610.57440.108*
H18B0.28890.73060.52550.108*
H18C0.23060.71680.53120.108*
C190.1699 (3)0.9130 (6)0.4479 (4)0.090 (2)
H19A0.18620.96210.49700.135*
H19B0.14180.85580.44750.135*
H19C0.14920.96320.39940.135*
C200.2636 (3)0.9367 (5)0.4439 (4)0.089 (2)
H20A0.27660.99450.48790.133*
H20B0.24290.97750.39120.133*
H20C0.29840.89510.45020.133*
C210.1340 (2)0.6438 (5)0.3553 (3)0.0633 (17)
H21A0.10900.68370.37200.095*
H21B0.15600.57950.39350.095*
H21C0.10870.61140.30040.095*
C220.2475 (2)0.6744 (6)0.3472 (3)0.0757 (19)
H22A0.26990.73170.33540.114*
H22B0.22900.61610.30320.114*
H22C0.27470.63440.39880.114*
S'0.47434 (5)0.22934 (11)0.36956 (6)0.0314 (3)
Si'0.32749 (6)0.77784 (12)0.12641 (8)0.0407 (4)
O1'0.47552 (13)0.1048 (3)0.38495 (18)0.0382 (8)
O2'0.52277 (11)0.3035 (3)0.42724 (16)0.0363 (8)
O3'0.31902 (12)0.2997 (3)0.33146 (18)0.0400 (8)
O4'0.41055 (14)0.4856 (3)0.45876 (18)0.0404 (8)
H4'0.42190.42040.48300.048*
O5'0.33037 (14)0.8161 (3)0.21186 (18)0.0499 (10)
N'0.41365 (13)0.2818 (3)0.36147 (18)0.0270 (8)
C1'0.47066 (16)0.2498 (4)0.2766 (2)0.0290 (10)
C2'0.48723 (19)0.3566 (4)0.2598 (3)0.0375 (12)
H2'A0.50160.41780.29940.045*
C3'0.4831 (2)0.3752 (5)0.1858 (3)0.0425 (13)
H3'A0.49450.44920.17500.051*
C4'0.46240 (19)0.2872 (5)0.1274 (3)0.0364 (12)
C5'0.44717 (19)0.1792 (4)0.1453 (3)0.0360 (12)
H5'A0.43420.11720.10640.043*
C6'0.45037 (17)0.1595 (4)0.2184 (3)0.0332 (11)
H6'A0.43890.08540.22910.040*
C7'0.4592 (2)0.3072 (5)0.0479 (3)0.0486 (14)
H7'A0.42130.27660.00310.073*
H7'B0.49230.26600.04870.073*
H7'C0.46190.39190.04010.073*
C8'0.35917 (18)0.2103 (4)0.3387 (3)0.0349 (12)
C9'0.3689 (2)0.1310 (4)0.4080 (3)0.0440 (13)
H9'A0.38240.17840.45720.066*
H9'B0.39920.07160.41830.066*
H9'C0.33150.09150.39330.066*
C10'0.33513 (19)0.1429 (4)0.2585 (3)0.0416 (13)
H10D0.29750.10450.24410.062*
H10E0.36420.08300.26490.062*
H10F0.32840.19810.21530.062*
C11'0.32856 (19)0.3992 (4)0.2954 (3)0.0403 (13)
H11A0.31440.47190.30860.048*
H11D0.30720.39040.23540.048*
C12'0.39582 (17)0.4040 (4)0.3316 (3)0.0303 (11)
H12'0.40440.42060.28750.036*
C13'0.4279 (2)0.4945 (4)0.4004 (2)0.0309 (11)
H13'0.47200.48330.42780.037*
C14'0.41146 (19)0.6151 (5)0.3636 (3)0.0350 (12)
C15'0.3987 (2)0.7067 (5)0.3305 (3)0.0413 (13)
C16'0.3825 (2)0.8229 (4)0.2900 (3)0.0543 (16)
H16C0.37610.87950.32390.065*
H16D0.41580.85280.28480.065*
C17'0.2463 (2)0.7598 (4)0.0517 (3)0.0496 (13)
C18'0.2355 (2)0.7335 (6)0.0336 (3)0.0703 (17)
H18D0.19300.71740.07140.105*
H18E0.25900.66460.03080.105*
H18F0.24750.80190.05300.105*
C19'0.2225 (2)0.6565 (5)0.0798 (4)0.0709 (18)
H19D0.17930.64910.04250.106*
H19E0.23110.67220.13510.106*
H19F0.24200.58300.07970.106*
C20'0.2138 (2)0.8750 (5)0.0482 (4)0.0700 (19)
H20D0.23010.94050.03250.105*
H20E0.21940.89100.10190.105*
H20F0.17110.86670.00790.105*
C21'0.3582 (2)0.8992 (5)0.0935 (3)0.0562 (15)
H21D0.33670.97250.08840.084*
H21E0.35330.87910.04080.084*
H21F0.40060.90960.13410.084*
C22'0.3710 (2)0.6407 (4)0.1417 (3)0.0499 (15)
H22D0.41280.65410.18390.075*
H22E0.36830.61910.09050.075*
H22F0.35470.57670.15870.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.0502 (8)0.0307 (9)0.0424 (7)0.0001 (7)0.0179 (6)0.0018 (7)
S0.0358 (6)0.0252 (7)0.0308 (6)0.0035 (6)0.0166 (5)0.0012 (6)
O10.053 (2)0.027 (2)0.0371 (18)0.0117 (16)0.0237 (16)0.0072 (15)
O20.0289 (16)0.037 (2)0.0368 (17)0.0023 (15)0.0131 (14)0.0092 (16)
O30.0410 (18)0.0301 (19)0.0530 (19)0.0014 (16)0.0286 (15)0.0008 (17)
O40.058 (2)0.030 (2)0.0303 (19)0.0085 (17)0.0209 (17)0.0041 (15)
O50.078 (2)0.029 (2)0.037 (2)0.0034 (18)0.0224 (18)0.0009 (15)
N0.0334 (19)0.022 (2)0.0320 (19)0.0066 (17)0.0192 (16)0.0029 (18)
C10.035 (2)0.029 (3)0.033 (2)0.003 (2)0.019 (2)0.003 (2)
C20.039 (3)0.026 (3)0.042 (3)0.002 (2)0.024 (2)0.007 (2)
C30.054 (3)0.028 (3)0.048 (3)0.005 (2)0.031 (3)0.000 (2)
C40.042 (3)0.044 (3)0.039 (3)0.003 (3)0.024 (2)0.001 (3)
C50.044 (3)0.038 (3)0.037 (3)0.008 (3)0.023 (2)0.014 (3)
C60.040 (3)0.024 (3)0.035 (3)0.005 (2)0.020 (2)0.007 (2)
C70.073 (4)0.057 (4)0.046 (3)0.001 (3)0.041 (3)0.003 (3)
C80.039 (3)0.033 (3)0.035 (3)0.002 (2)0.020 (2)0.000 (2)
C90.056 (3)0.036 (3)0.046 (3)0.008 (2)0.031 (3)0.003 (3)
C100.044 (3)0.032 (3)0.044 (3)0.004 (2)0.021 (2)0.004 (2)
C110.036 (3)0.035 (3)0.047 (3)0.005 (2)0.019 (2)0.002 (2)
C120.037 (3)0.020 (3)0.028 (2)0.007 (2)0.015 (2)0.005 (2)
C130.035 (2)0.020 (3)0.035 (3)0.004 (2)0.016 (2)0.001 (2)
C140.047 (3)0.026 (3)0.033 (3)0.001 (2)0.018 (2)0.002 (2)
C150.062 (3)0.029 (3)0.033 (3)0.004 (3)0.020 (2)0.003 (3)
C160.108 (5)0.027 (3)0.045 (3)0.017 (3)0.037 (3)0.006 (3)
C170.049 (3)0.040 (3)0.039 (3)0.004 (3)0.016 (2)0.002 (2)
C180.085 (4)0.055 (4)0.045 (3)0.001 (3)0.012 (3)0.006 (3)
C190.117 (5)0.086 (5)0.074 (4)0.041 (4)0.055 (4)0.003 (4)
C200.100 (5)0.059 (5)0.083 (5)0.048 (4)0.031 (4)0.015 (4)
C210.063 (3)0.047 (4)0.077 (4)0.016 (3)0.034 (3)0.004 (3)
C220.069 (4)0.073 (5)0.074 (4)0.018 (4)0.030 (3)0.017 (4)
S'0.0359 (6)0.0280 (8)0.0318 (6)0.0042 (6)0.0187 (6)0.0004 (6)
Si'0.0483 (7)0.0317 (9)0.0401 (7)0.0042 (7)0.0218 (6)0.0005 (6)
O1'0.051 (2)0.027 (2)0.0393 (18)0.0105 (16)0.0256 (16)0.0076 (15)
O2'0.0321 (16)0.042 (2)0.0323 (16)0.0030 (15)0.0147 (13)0.0079 (16)
O3'0.0355 (17)0.038 (2)0.0504 (19)0.0021 (16)0.0249 (15)0.0024 (17)
O4'0.059 (2)0.030 (2)0.0347 (19)0.0080 (17)0.0263 (17)0.0047 (16)
O5'0.067 (2)0.045 (2)0.0360 (18)0.0150 (18)0.0250 (17)0.0099 (17)
N'0.0312 (18)0.021 (2)0.0297 (18)0.0037 (17)0.0166 (15)0.0032 (17)
C1'0.027 (2)0.030 (3)0.030 (2)0.002 (2)0.0154 (18)0.004 (2)
C2'0.046 (3)0.032 (3)0.042 (3)0.006 (2)0.028 (2)0.009 (2)
C3'0.060 (3)0.031 (3)0.050 (3)0.011 (3)0.038 (3)0.004 (3)
C4'0.036 (3)0.044 (3)0.032 (2)0.002 (2)0.020 (2)0.001 (3)
C5'0.044 (3)0.031 (3)0.033 (3)0.003 (2)0.020 (2)0.007 (2)
C6'0.036 (2)0.024 (3)0.039 (3)0.005 (2)0.019 (2)0.004 (2)
C7'0.057 (3)0.057 (4)0.043 (3)0.001 (3)0.034 (2)0.001 (3)
C8'0.034 (2)0.032 (3)0.043 (3)0.001 (2)0.023 (2)0.001 (2)
C9'0.053 (3)0.040 (3)0.049 (3)0.010 (2)0.033 (3)0.003 (3)
C10'0.046 (3)0.035 (3)0.044 (3)0.007 (2)0.023 (2)0.008 (2)
C11'0.043 (3)0.029 (3)0.044 (3)0.005 (2)0.020 (2)0.001 (2)
C12'0.033 (2)0.026 (3)0.031 (3)0.008 (2)0.016 (2)0.001 (2)
C13'0.044 (3)0.022 (3)0.026 (3)0.005 (2)0.018 (2)0.005 (2)
C14'0.036 (3)0.036 (3)0.033 (3)0.000 (2)0.018 (2)0.006 (3)
C15'0.056 (3)0.031 (3)0.035 (3)0.002 (2)0.022 (2)0.001 (2)
C16'0.083 (4)0.025 (3)0.039 (3)0.003 (3)0.020 (3)0.002 (2)
C17'0.057 (3)0.039 (3)0.058 (3)0.003 (3)0.033 (2)0.003 (3)
C18'0.066 (3)0.091 (5)0.046 (3)0.020 (4)0.023 (3)0.008 (4)
C19'0.075 (4)0.055 (4)0.101 (5)0.026 (3)0.058 (4)0.011 (4)
C20'0.053 (3)0.061 (5)0.090 (5)0.010 (3)0.033 (3)0.006 (3)
C21'0.059 (3)0.041 (3)0.077 (4)0.007 (3)0.042 (3)0.000 (3)
C22'0.059 (3)0.034 (3)0.058 (3)0.016 (3)0.031 (3)0.003 (3)
Geometric parameters (Å, º) top
Si—O51.644 (3)S'—O1'1.439 (3)
Si—C171.856 (5)S'—O2'1.444 (3)
Si—C221.868 (5)S'—N'1.632 (3)
Si—C211.887 (5)S'—C1'1.754 (4)
S—O21.437 (3)Si'—O5'1.662 (3)
S—O11.442 (3)Si'—C22'1.859 (5)
S—N1.636 (3)Si'—C17'1.861 (4)
S—C11.769 (4)Si'—C21'1.863 (5)
O3—C81.424 (5)O3'—C11'1.413 (6)
O3—C111.432 (6)O3'—C8'1.416 (5)
O4—C131.421 (5)O4'—C13'1.418 (5)
O4—H40.8400O4'—H4'0.8400
O5—C161.417 (6)O5'—C16'1.412 (5)
N—C121.478 (5)N'—C12'1.479 (5)
N—C81.506 (6)N'—C8'1.499 (5)
C1—C21.383 (6)C1'—C2'1.380 (6)
C1—C61.397 (6)C1'—C6'1.400 (6)
C2—C31.381 (6)C2'—C3'1.385 (7)
C2—H2B0.9500C2'—H2'A0.9500
C3—C41.378 (7)C3'—C4'1.384 (7)
C3—H3A0.9500C3'—H3'A0.9500
C4—C51.389 (7)C4'—C5'1.386 (6)
C4—C71.514 (6)C4'—C7'1.502 (6)
C5—C61.373 (6)C5'—C6'1.380 (6)
C5—H5A0.9500C5'—H5'A0.9500
C6—H6A0.9500C6'—H6'A0.9500
C7—H7A0.9800C7'—H7'A0.9800
C7—H7B0.9800C7'—H7'B0.9800
C7—H7C0.9800C7'—H7'C0.9800
C8—C91.506 (6)C8'—C9'1.514 (6)
C8—C101.532 (6)C8'—C10'1.531 (6)
C9—H9A0.9800C9'—H9'A0.9800
C9—H9B0.9800C9'—H9'B0.9800
C9—H9C0.9800C9'—H9'C0.9800
C10—H10A0.9800C10'—H10D0.9800
C10—H10B0.9800C10'—H10E0.9800
C10—H10C0.9800C10'—H10F0.9800
C11—C121.536 (6)C11'—C12'1.527 (6)
C11—H11B0.9900C11'—H11A0.9900
C11—H11C0.9900C11'—H11D0.9900
C12—C131.535 (6)C12'—C13'1.533 (6)
C12—H12B1.0000C12'—H12'1.0000
C13—C141.476 (7)C13'—C14'1.495 (7)
C13—H13A1.0000C13'—H13'1.0000
C14—C151.179 (6)C14'—C15'1.171 (6)
C15—C161.474 (7)C15'—C16'1.477 (7)
C16—H16A0.9900C16'—H16C0.9900
C16—H16B0.9900C16'—H16D0.9900
C17—C191.533 (7)C17'—C18'1.541 (7)
C17—C201.543 (7)C17'—C20'1.543 (7)
C17—C181.555 (6)C17'—C19'1.551 (7)
C18—H18A0.9800C18'—H18D0.9800
C18—H18B0.9800C18'—H18E0.9800
C18—H18C0.9800C18'—H18F0.9800
C19—H19A0.9800C19'—H19D0.9800
C19—H19B0.9800C19'—H19E0.9800
C19—H19C0.9800C19'—H19F0.9800
C20—H20A0.9800C20'—H20D0.9800
C20—H20B0.9800C20'—H20E0.9800
C20—H20C0.9800C20'—H20F0.9800
C21—H21A0.9800C21'—H21D0.9800
C21—H21B0.9800C21'—H21E0.9800
C21—H21C0.9800C21'—H21F0.9800
C22—H22A0.9800C22'—H22D0.9800
C22—H22B0.9800C22'—H22E0.9800
C22—H22C0.9800C22'—H22F0.9800
O5—Si—C17104.6 (2)O1'—S'—O2'119.81 (19)
O5—Si—C22110.7 (3)O1'—S'—N'107.00 (19)
C17—Si—C22111.5 (2)O2'—S'—N'106.73 (18)
O5—Si—C21108.6 (2)O1'—S'—C1'108.8 (2)
C17—Si—C21110.6 (3)O2'—S'—C1'105.3 (2)
C22—Si—C21110.7 (3)N'—S'—C1'108.81 (18)
O2—S—O1119.40 (18)O5'—Si'—C22'110.7 (2)
O2—S—N106.14 (19)O5'—Si'—C17'103.6 (2)
O1—S—N107.5 (2)C22'—Si'—C17'113.2 (2)
O2—S—C1105.8 (2)O5'—Si'—C21'109.7 (2)
O1—S—C1108.8 (2)C22'—Si'—C21'109.4 (2)
N—S—C1108.89 (18)C17'—Si'—C21'110.1 (2)
C8—O3—C11107.8 (3)C11'—O3'—C8'107.8 (3)
C13—O4—H4109.5C13'—O4'—H4'109.5
C16—O5—Si128.3 (3)C16'—O5'—Si'125.7 (3)
C12—N—C8110.2 (3)C12'—N'—C8'109.4 (3)
C12—N—S119.0 (3)C12'—N'—S'118.3 (3)
C8—N—S123.4 (3)C8'—N'—S'124.6 (3)
C2—C1—C6119.7 (4)C2'—C1'—C6'119.4 (4)
C2—C1—S119.0 (3)C2'—C1'—S'119.8 (3)
C6—C1—S121.2 (4)C6'—C1'—S'120.9 (4)
C3—C2—C1119.2 (4)C1'—C2'—C3'120.5 (4)
C3—C2—H2B120.4C1'—C2'—H2'A119.7
C1—C2—H2B120.4C3'—C2'—H2'A119.7
C4—C3—C2121.7 (5)C4'—C3'—C2'120.7 (5)
C4—C3—H3A119.2C4'—C3'—H3'A119.7
C2—C3—H3A119.2C2'—C3'—H3'A119.7
C3—C4—C5118.6 (5)C3'—C4'—C5'118.5 (4)
C3—C4—C7121.1 (5)C3'—C4'—C7'120.4 (5)
C5—C4—C7120.3 (4)C5'—C4'—C7'121.0 (4)
C6—C5—C4120.7 (5)C6'—C5'—C4'121.5 (5)
C6—C5—H5A119.7C6'—C5'—H5'A119.2
C4—C5—H5A119.7C4'—C5'—H5'A119.2
C5—C6—C1120.0 (5)C5'—C6'—C1'119.3 (5)
C5—C6—H6A120.0C5'—C6'—H6'A120.3
C1—C6—H6A120.0C1'—C6'—H6'A120.3
C4—C7—H7A109.5C4'—C7'—H7'A109.5
C4—C7—H7B109.5C4'—C7'—H7'B109.5
H7A—C7—H7B109.5H7'A—C7'—H7'B109.5
C4—C7—H7C109.5C4'—C7'—H7'C109.5
H7A—C7—H7C109.5H7'A—C7'—H7'C109.5
H7B—C7—H7C109.5H7'B—C7'—H7'C109.5
O3—C8—N100.7 (4)O3'—C8'—N'101.0 (4)
O3—C8—C9106.8 (4)O3'—C8'—C9'106.7 (4)
N—C8—C9112.3 (3)N'—C8'—C9'111.5 (3)
O3—C8—C10110.2 (3)O3'—C8'—C10'111.2 (3)
N—C8—C10112.5 (4)N'—C8'—C10'113.2 (4)
C9—C8—C10113.4 (4)C9'—C8'—C10'112.4 (4)
C8—C9—H9A109.5C8'—C9'—H9'A109.5
C8—C9—H9B109.5C8'—C9'—H9'B109.5
H9A—C9—H9B109.5H9'A—C9'—H9'B109.5
C8—C9—H9C109.5C8'—C9'—H9'C109.5
H9A—C9—H9C109.5H9'A—C9'—H9'C109.5
H9B—C9—H9C109.5H9'B—C9'—H9'C109.5
C8—C10—H10A109.5C8'—C10'—H10D109.5
C8—C10—H10B109.5C8'—C10'—H10E109.5
H10A—C10—H10B109.5H10D—C10'—H10E109.5
C8—C10—H10C109.5C8'—C10'—H10F109.5
H10A—C10—H10C109.5H10D—C10'—H10F109.5
H10B—C10—H10C109.5H10E—C10'—H10F109.5
O3—C11—C12105.3 (3)O3'—C11'—C12'105.3 (4)
O3—C11—H11B110.7O3'—C11'—H11A110.7
C12—C11—H11B110.7C12'—C11'—H11A110.7
O3—C11—H11C110.7O3'—C11'—H11D110.7
C12—C11—H11C110.7C12'—C11'—H11D110.7
H11B—C11—H11C108.8H11A—C11'—H11D108.8
N—C12—C13111.5 (3)N'—C12'—C11'101.6 (4)
N—C12—C11101.5 (4)N'—C12'—C13'111.8 (3)
C13—C12—C11113.6 (4)C11'—C12'—C13'113.7 (4)
N—C12—H12B110.0N'—C12'—H12'109.8
C13—C12—H12B110.0C11'—C12'—H12'109.8
C11—C12—H12B110.0C13'—C12'—H12'109.8
O4—C13—C14108.5 (4)O4'—C13'—C14'107.9 (4)
O4—C13—C12112.3 (4)O4'—C13'—C12'112.0 (4)
C14—C13—C12108.3 (3)C14'—C13'—C12'108.1 (3)
O4—C13—H13A109.2O4'—C13'—H13'109.6
C14—C13—H13A109.2C14'—C13'—H13'109.6
C12—C13—H13A109.2C12'—C13'—H13'109.6
C15—C14—C13177.7 (5)C15'—C14'—C13'175.6 (5)
C14—C15—C16176.4 (5)C14'—C15'—C16'179.0 (6)
O5—C16—C15114.0 (4)O5'—C16'—C15'111.4 (4)
O5—C16—H16A108.8O5'—C16'—H16C109.3
C15—C16—H16A108.8C15'—C16'—H16C109.3
O5—C16—H16B108.8O5'—C16'—H16D109.3
C15—C16—H16B108.8C15'—C16'—H16D109.3
H16A—C16—H16B107.7H16C—C16'—H16D108.0
C19—C17—C20109.7 (5)C18'—C17'—C20'109.0 (4)
C19—C17—C18110.5 (5)C18'—C17'—C19'109.9 (4)
C20—C17—C18108.1 (4)C20'—C17'—C19'109.8 (4)
C19—C17—Si108.3 (3)C18'—C17'—Si'110.1 (3)
C20—C17—Si108.6 (4)C20'—C17'—Si'109.1 (3)
C18—C17—Si111.5 (4)C19'—C17'—Si'108.8 (3)
C17—C18—H18A109.5C17'—C18'—H18D109.5
C17—C18—H18B109.5C17'—C18'—H18E109.5
H18A—C18—H18B109.5H18D—C18'—H18E109.5
C17—C18—H18C109.5C17'—C18'—H18F109.5
H18A—C18—H18C109.5H18D—C18'—H18F109.5
H18B—C18—H18C109.5H18E—C18'—H18F109.5
C17—C19—H19A109.5C17'—C19'—H19D109.5
C17—C19—H19B109.5C17'—C19'—H19E109.5
H19A—C19—H19B109.5H19D—C19'—H19E109.5
C17—C19—H19C109.5C17'—C19'—H19F109.5
H19A—C19—H19C109.5H19D—C19'—H19F109.5
H19B—C19—H19C109.5H19E—C19'—H19F109.5
C17—C20—H20A109.5C17'—C20'—H20D109.5
C17—C20—H20B109.5C17'—C20'—H20E109.5
H20A—C20—H20B109.5H20D—C20'—H20E109.5
C17—C20—H20C109.5C17'—C20'—H20F109.5
H20A—C20—H20C109.5H20D—C20'—H20F109.5
H20B—C20—H20C109.5H20E—C20'—H20F109.5
Si—C21—H21A109.5Si'—C21'—H21D109.5
Si—C21—H21B109.5Si'—C21'—H21E109.5
H21A—C21—H21B109.5H21D—C21'—H21E109.5
Si—C21—H21C109.5Si'—C21'—H21F109.5
H21A—C21—H21C109.5H21D—C21'—H21F109.5
H21B—C21—H21C109.5H21E—C21'—H21F109.5
Si—C22—H22A109.5Si'—C22'—H22D109.5
Si—C22—H22B109.5Si'—C22'—H22E109.5
H22A—C22—H22B109.5H22D—C22'—H22E109.5
Si—C22—H22C109.5Si'—C22'—H22F109.5
H22A—C22—H22C109.5H22D—C22'—H22F109.5
H22B—C22—H22C109.5H22E—C22'—H22F109.5
C17—Si—O5—C16155.8 (4)C17'—Si'—O5'—C16'169.9 (4)
C22—Si—O5—C1635.6 (5)C21'—Si'—O5'—C16'72.6 (4)
C21—Si—O5—C1686.1 (5)O1'—S'—N'—C12'169.6 (3)
O2—S—N—C1261.0 (3)O2'—S'—N'—C12'61.0 (3)
O1—S—N—C12170.2 (3)C1'—S'—N'—C12'52.2 (3)
C1—S—N—C1252.6 (3)O1'—S'—N'—C8'23.5 (4)
O2—S—N—C8151.9 (3)O2'—S'—N'—C8'152.9 (3)
O1—S—N—C823.1 (3)C1'—S'—N'—C8'94.0 (4)
C1—S—N—C894.6 (3)O1'—S'—C1'—C2'160.1 (3)
O2—S—C1—C231.0 (4)O2'—S'—C1'—C2'30.4 (4)
O1—S—C1—C2160.4 (3)N'—S'—C1'—C2'83.7 (4)
N—S—C1—C282.7 (4)O1'—S'—C1'—C6'20.7 (4)
O2—S—C1—C6146.2 (3)O2'—S'—C1'—C6'150.4 (3)
O1—S—C1—C616.7 (4)N'—S'—C1'—C6'95.5 (4)
N—S—C1—C6100.1 (4)C6'—C1'—C2'—C3'0.9 (7)
C6—C1—C2—C30.1 (6)S'—C1'—C2'—C3'178.3 (4)
S—C1—C2—C3177.3 (4)C1'—C2'—C3'—C4'0.2 (7)
C1—C2—C3—C40.0 (7)C2'—C3'—C4'—C5'1.3 (7)
C2—C3—C4—C50.8 (7)C2'—C3'—C4'—C7'178.8 (4)
C2—C3—C4—C7179.0 (4)C3'—C4'—C5'—C6'2.1 (7)
C3—C4—C5—C61.5 (7)C7'—C4'—C5'—C6'179.5 (4)
C7—C4—C5—C6179.6 (4)C4'—C5'—C6'—C1'1.4 (7)
C4—C5—C6—C11.3 (7)C2'—C1'—C6'—C5'0.2 (7)
C2—C1—C6—C50.5 (6)S'—C1'—C6'—C5'179.0 (3)
S—C1—C6—C5176.7 (3)C11'—O3'—C8'—N'38.2 (4)
C11—O3—C8—N37.8 (4)C11'—O3'—C8'—C9'154.9 (4)
C11—O3—C8—C9155.2 (4)C11'—O3'—C8'—C10'82.2 (4)
C11—O3—C8—C1081.2 (4)C12'—N'—C8'—O3'24.8 (4)
C12—N—C8—O325.0 (4)S'—N'—C8'—O3'173.5 (3)
S—N—C8—O3174.6 (3)C12'—N'—C8'—C9'137.9 (4)
C12—N—C8—C9138.3 (4)S'—N'—C8'—C9'73.4 (5)
S—N—C8—C972.1 (5)C12'—N'—C8'—C10'94.3 (4)
C12—N—C8—C1092.3 (4)S'—N'—C8'—C10'54.4 (5)
S—N—C8—C1057.3 (4)C8'—O3'—C11'—C12'37.7 (5)
C8—O3—C11—C1237.1 (5)C8'—N'—C12'—C11'3.4 (4)
C8—N—C12—C13125.1 (4)S'—N'—C12'—C11'154.4 (3)
S—N—C12—C1383.8 (4)C8'—N'—C12'—C13'125.0 (4)
C8—N—C12—C113.8 (4)S'—N'—C12'—C13'84.0 (4)
S—N—C12—C11155.0 (3)O3'—C11'—C12'—N'19.6 (5)
O3—C11—C12—N19.0 (4)O3'—C11'—C12'—C13'100.6 (4)
O3—C11—C12—C13100.8 (4)N'—C12'—C13'—O4'66.3 (5)
N—C12—C13—O463.6 (5)C11'—C12'—C13'—O4'48.0 (5)
C11—C12—C13—O450.3 (5)N'—C12'—C13'—C14'175.0 (4)
N—C12—C13—C14176.6 (4)C11'—C12'—C13'—C14'70.7 (5)
C11—C12—C13—C1469.5 (5)Si'—O5'—C16'—C15'84.5 (5)
O5—Si—C17—C1957.4 (4)O5'—Si'—C17'—C18'175.5 (4)
C22—Si—C17—C19177.1 (4)C22'—Si'—C17'—C18'64.5 (4)
C21—Si—C17—C1959.3 (4)C21'—Si'—C17'—C18'58.2 (5)
O5—Si—C17—C2061.7 (4)O5'—Si'—C17'—C20'55.9 (4)
C22—Si—C17—C2058.0 (4)C22'—Si'—C17'—C20'175.8 (4)
C21—Si—C17—C20178.5 (4)C21'—Si'—C17'—C20'61.4 (4)
O5—Si—C17—C18179.2 (4)O5'—Si'—C17'—C19'63.9 (4)
C22—Si—C17—C1861.1 (5)C22'—Si'—C17'—C19'56.0 (4)
C21—Si—C17—C1862.5 (4)C21'—Si'—C17'—C19'178.8 (4)
C22'—Si'—O5'—C16'48.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.842.012.828 (4)164
O4—H4···O2ii0.842.062.851 (4)157
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H35NO5SSi
Mr453.66
Crystal system, space groupMonoclinic, C2
Temperature (K)173
a, b, c (Å)26.283 (5), 11.335 (2), 19.219 (4)
β (°) 121.40 (3)
V3)4887 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.10 × 0.08 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8353, 8353, 3487
Rint0.035
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.03
No. of reflections8353
No. of parameters559
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), 3636 Friedel pairs
Absolute structure parameter0.09 (7)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.842.012.828 (4)164
O4'—H4'···O2'ii0.842.062.851 (4)157
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
 

References

First citationAnh, N. T. & Eisenstein, O. (1977). Nouv. J. Chim. 1, 61–70.  Google Scholar
First citationChérest, M., Felkin, H. & Prudent, N. (1968). Tetrahedron Lett. 9, 2199–2204.  Google Scholar
First citationDeutsch, C., Lipshutz, B. H. & Krause, N. (2008). J. Am. Chem. Soc. In preparation.  Google Scholar
First citationErdsack, J. & Krause, N. (2008). Eur. J. Org. Chem. In preparation.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarner, P. & Park, J. M. (1987). J. Org. Chem. 52, 2361–2364.  CrossRef CAS Web of Science Google Scholar
First citationHoffmann-Röder, A. & Krause, N. (2001). Org. Lett. 3, 2537–2538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, G. & Rhee, H. (2000). J. Kor. Chem. Soc. 44, 30–36.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326, New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds