organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Iso­propyl­benzamide

aDepartment of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada M5S 3H6, and bPET Centre, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 29 April 2008; accepted 30 April 2008; online 7 May 2008)

In the title compound, C10H13NO, the dihedral angle between the amide group and the phenyl ring is 30.0 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into one-dimensional chains along the a axis.

Related literature

For related literature, see: Clayden et al. (2006[Clayden, J., Stimson, C. C. & Keenan, M. (2006). Chem. Commun. 13, 1393-1394.]); Kopka et al. (2005[Kopka, K., Kaw, M. P., Breyholz, H. J., Faust, A., Hoeltke, C., Riemann, B., Schober, O., Schaefers, M. & Wagner, S. (2005). Curr. Med. Chem. 12, 2057-2074.]); Smart (2001[Smart, B. E. (2001). J. Fluorine Chem. 109, 3-11.]); Van Waarde et al. (2004[Van Waarde, A., Vaalburg, W., Doze, P., Bosker, F. J. & Elsinga, P. H. (2004). Curr. Pharm. Des. 10, 1519-1536.]); Stephenson, Wilson et al. (2008[Stephenson, K. A., Wilson, A. A., Meyer, J. H., Houle, S. & Vasdev, N. (2008). J. Med. Chem. In the press.]); Stephenson, van Oosten et al. (2008[Stephenson, K. A., van Oosten, E. M., Wilson, A. A., Meyer, J. H., Houle, S. & Vasdev, N. (2008). Neurochem. Int. Accepted.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO

  • Mr = 163.21

  • Monoclinic, P 21

  • a = 5.0093 (7) Å

  • b = 10.1250 (13) Å

  • c = 9.6714 (14) Å

  • β = 104.133 (7)°

  • V = 475.68 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 (1) K

  • 0.14 × 0.13 × 0.08 mm

Data collection
  • Bruker Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.954, Tmax = 0.996

  • 2462 measured reflections

  • 887 independent reflections

  • 621 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.148

  • S = 1.06

  • 887 reflections

  • 114 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (5) 2.10 (5) 2.890 (5) 160 (5)
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The isopropylamine moiety is a common structural feature in many pharmaceutical compounds, in particular among β-adrenergic receptor antagonists (β-blockers) (Van Waarde et al., 2004; Kopka et al., 2005). Recent work in our laboratory (Stephenson, Wilson et al., 2008; Stephenson, van Oosten et al., 2008) and others (Van Waarde et al., 2004; Kopka et al., 2005) has focused on developing β-blockers labeled with the positron emitting isotope fluorine-18 (t1/2 = 109.7 min) at the isopropyl moiety for medical imaging with positron emission tomography. It is established that substitution of fluorine into a drug often enhances its biological properties (Smart, 2001). Our goal is to structurally characterize the isopropylamine group for comparison with fluorinated analogs developed in our laboratory. Herein we report the single-crystal X-ray structure of the title compound, (I), (Fig. 1).

The dihedral angle between the essentially planar set of atoms C7/O1/N1/C8 [r.m.s. deviation 0.006 Å] and the benzene ring (C1–C6) in (I) is 30.0 (3)°. In the crystal structure, intermolecular N—H···O hydrogen bonds link molecules into one-dimensional chains along the a axis (Table 1, Fig. 2).

Related literature top

For related literature, see: Clayden et al. (2006); Kopka et al. (2005); Smart (2001); Van Waarde et al. (2004); Stephenson, Wilson et al. (2008); Stephenson, van Oosten et al. (2008).

Experimental top

N-Isopropylbenzamide was made according to a literature procedure (Clayden et al., 2006), with minor modifications. Benzoyl chloride (0.825 ml, 7.11 mmol) was added to CH2Cl2 (17 ml, 0.4 M) under nitrogen. The mixture was cooled in an ice bath to 273 K and stirred for 10 min. Isopropylamine (1.8 ml, 21.33 mmol) was added dropwise. Upon completion of this addition the ice bath was removed and the reaction mixture was stirred at room temperature for 1.5 h. When the starting material was consumed (monitored by TLC) the reaction mixture was diluted with H2O (150 ml), extracted with CH2Cl2 (3 × 50 ml), washed with H2O (2 × 100 ml) followed by brine (2 × 100 ml), dried over Na2SO4, and concentrated. No further purification was necessary. Colourless blocks of (I) were obtained by slow evaporation of a solution of the title compound in CDCl3. 1H NMR (CDCl3, 300 MHz) d = 7.78–7.67 (m, 2H), 7.51–7.36 (m, 3H), 5.99 (br, 1H), 4.37–4.18 (m, 1H), 1.25 (d, J = 6.5 Hz, 6H) 13C NMR (CDCl3, 75 MHz) d = 166.9, 135.2, 131.5, 128.7, 127.0, 42.1, 23.1.

Refinement top

In the absence of significant anamlous dispersion effects, Friedel pairs were merged before refinement. The H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95 Å and 0.98 Å (methyl). They were included in the refinement in the riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms. The position of the H atom bonded to the N atom was refined independently with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
N-Isopropylbenzamide top
Crystal data top
C10H13NOF(000) = 176
Mr = 163.21Dx = 1.140 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2462 reflections
a = 5.0093 (7) Åθ = 3.0–25.0°
b = 10.1250 (13) ŵ = 0.07 mm1
c = 9.6714 (14) ÅT = 150 K
β = 104.133 (7)°Block, colourless
V = 475.68 (11) Å30.14 × 0.13 × 0.08 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD
diffractometer
887 independent reflections
Radiation source: fine-focus sealed tube621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ scans and ω scans with κ offsetsh = 55
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 1210
Tmin = 0.954, Tmax = 0.996l = 1111
2462 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0784P)2]
where P = (Fo2 + 2Fc2)/3
887 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C10H13NOV = 475.68 (11) Å3
Mr = 163.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.0093 (7) ŵ = 0.07 mm1
b = 10.1250 (13) ÅT = 150 K
c = 9.6714 (14) Å0.14 × 0.13 × 0.08 mm
β = 104.133 (7)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
887 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
621 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.996Rint = 0.061
2462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
887 reflectionsΔρmin = 0.21 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6751 (6)0.1703 (3)0.8045 (3)0.0424 (8)
N10.2696 (8)0.1717 (4)0.8673 (4)0.0411 (10)
H1N0.103 (11)0.188 (5)0.839 (5)0.049*
C10.3226 (9)0.3127 (4)0.6749 (5)0.0350 (11)
C20.4247 (10)0.3165 (5)0.5544 (5)0.0452 (13)
H2A0.56010.25450.54320.054*
C30.3286 (11)0.4116 (6)0.4493 (5)0.0535 (14)
H3A0.39570.41260.36550.064*
C40.1377 (10)0.5034 (5)0.4666 (6)0.0516 (14)
H4A0.07340.56820.39510.062*
C50.0391 (11)0.5014 (5)0.5883 (6)0.0523 (14)
H5A0.09120.56560.60100.063*
C60.1296 (9)0.4064 (5)0.6915 (5)0.0451 (13)
H6A0.05970.40510.77440.054*
C70.4356 (8)0.2117 (4)0.7864 (4)0.0362 (12)
C80.3461 (10)0.0743 (5)0.9808 (5)0.0474 (13)
H8A0.54890.05860.99960.057*
C90.1984 (13)0.0561 (5)0.9351 (6)0.0648 (16)
H9A0.25250.09030.85120.097*
H9B0.00110.04170.91160.097*
H9C0.24880.12001.01320.097*
C100.2833 (11)0.1271 (6)1.1160 (5)0.0556 (15)
H10A0.37430.21261.14000.083*
H10B0.35100.06471.19420.083*
H10C0.08390.13801.10130.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0319 (17)0.0442 (18)0.0515 (17)0.0024 (15)0.0112 (13)0.0032 (16)
N10.0326 (19)0.046 (2)0.047 (2)0.003 (2)0.0149 (18)0.012 (2)
C10.033 (2)0.035 (2)0.039 (3)0.006 (2)0.012 (2)0.000 (2)
C20.049 (3)0.044 (3)0.046 (3)0.001 (2)0.019 (2)0.003 (2)
C30.057 (3)0.061 (3)0.046 (3)0.003 (3)0.019 (3)0.012 (3)
C40.049 (3)0.051 (3)0.050 (3)0.002 (3)0.004 (3)0.020 (3)
C50.053 (3)0.040 (3)0.066 (3)0.007 (3)0.017 (3)0.013 (3)
C60.046 (3)0.042 (3)0.051 (3)0.003 (2)0.017 (2)0.005 (3)
C70.035 (3)0.034 (3)0.037 (2)0.004 (2)0.005 (2)0.008 (2)
C80.041 (3)0.054 (3)0.048 (3)0.012 (3)0.012 (2)0.017 (3)
C90.085 (4)0.043 (3)0.064 (3)0.010 (3)0.014 (3)0.012 (3)
C100.062 (3)0.062 (4)0.044 (3)0.001 (3)0.015 (2)0.012 (3)
Geometric parameters (Å, º) top
O1—C71.242 (5)C5—C61.380 (7)
N1—C71.337 (6)C5—H5A0.9500
N1—C81.455 (6)C6—H6A0.9500
N1—H1N0.83 (5)C8—C101.516 (7)
C1—C21.383 (6)C8—C91.525 (8)
C1—C61.392 (6)C8—H8A1.0000
C1—C71.493 (6)C9—H9A0.9800
C2—C31.398 (8)C9—H9B0.9800
C2—H2A0.9500C9—H9C0.9800
C3—C41.373 (7)C10—H10A0.9800
C3—H3A0.9500C10—H10B0.9800
C4—C51.384 (7)C10—H10C0.9800
C4—H4A0.9500
C7—N1—C8124.0 (4)O1—C7—N1122.2 (4)
C7—N1—H1N118 (4)O1—C7—C1121.0 (4)
C8—N1—H1N117 (4)N1—C7—C1116.7 (4)
C2—C1—C6119.2 (4)N1—C8—C10109.9 (4)
C2—C1—C7118.3 (4)N1—C8—C9110.4 (4)
C6—C1—C7122.4 (4)C10—C8—C9111.5 (4)
C1—C2—C3120.0 (5)N1—C8—H8A108.3
C1—C2—H2A120.0C10—C8—H8A108.3
C3—C2—H2A120.0C9—C8—H8A108.3
C4—C3—C2120.3 (5)C8—C9—H9A109.5
C4—C3—H3A119.9C8—C9—H9B109.5
C2—C3—H3A119.9H9A—C9—H9B109.5
C3—C4—C5119.8 (5)C8—C9—H9C109.5
C3—C4—H4A120.1H9A—C9—H9C109.5
C5—C4—H4A120.1H9B—C9—H9C109.5
C6—C5—C4120.2 (5)C8—C10—H10A109.5
C6—C5—H5A119.9C8—C10—H10B109.5
C4—C5—H5A119.9H10A—C10—H10B109.5
C5—C6—C1120.5 (4)C8—C10—H10C109.5
C5—C6—H6A119.8H10A—C10—H10C109.5
C1—C6—H6A119.8H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (5)2.10 (5)2.890 (5)160 (5)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H13NO
Mr163.21
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)5.0093 (7), 10.1250 (13), 9.6714 (14)
β (°) 104.133 (7)
V3)475.68 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.14 × 0.13 × 0.08
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.954, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
2462, 887, 621
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.06
No. of reflections887
No. of parameters114
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (5)2.10 (5)2.890 (5)160 (5)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank Dr Karin A. Stephenson, Dr Andrei K. Yudin and Dr Alan A. Wilson for helpful discussions. We thank Dr Sylvain Houle for allowing the CAMH PET Centre facilities to be used for this research. Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes for Health Research in the form of a Collaborative Health Research Projects Grant (CHRPJ 322787-06).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClayden, J., Stimson, C. C. & Keenan, M. (2006). Chem. Commun. 13, 1393–1394.  Web of Science CrossRef Google Scholar
First citationKopka, K., Kaw, M. P., Breyholz, H. J., Faust, A., Hoeltke, C., Riemann, B., Schober, O., Schaefers, M. & Wagner, S. (2005). Curr. Med. Chem. 12, 2057–2074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmart, B. E. (2001). J. Fluorine Chem. 109, 3–11.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, K. A., van Oosten, E. M., Wilson, A. A., Meyer, J. H., Houle, S. & Vasdev, N. (2008). Neurochem. Int. Accepted.  Google Scholar
First citationStephenson, K. A., Wilson, A. A., Meyer, J. H., Houle, S. & Vasdev, N. (2008). J. Med. Chem. In the press.  Google Scholar
First citationVan Waarde, A., Vaalburg, W., Doze, P., Bosker, F. J. & Elsinga, P. H. (2004). Curr. Pharm. Des. 10, 1519–1536.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds