metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(di-tert-butyl­methyl­phosphine oxide-κO)di­phenyl­tin(IV)

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 8 May 2008; accepted 8 May 2008; online 10 May 2008)

The complete mol­ecule of the title compound, [Sn(C6H5)2Cl2(C9H21OP)2], is generated by crystallographic inversion symmetry, the Sn atom is located on a special position of site symmetry [\overline{1}]. The Sn atom adopts an all-trans SnC2O2Cl2 octa­hedral geometry. As a consequence of the bulky substituents at the O atom, the P—O—Sn bond angle is 163.9 (3)°.

Related literature

For related literature, see: Lerner et al. (2005[Lerner, H.-W., Haghiri Ilkechi, A., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413-415.]); Ruth et al. (2005[Ruth, K., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, m1852-m1853.], 2007[Ruth, K., Müller, M., Bolte, M., Bats, J. W., Wagner, M. & Lerner, H.-W. (2007). Z. Anorg. Allg. Chem. 633, 1485-1489.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2Cl2(C9H21OP)2]

  • Mr = 696.25

  • Monoclinic, P 21 /c

  • a = 12.1782 (19) Å

  • b = 9.0866 (8) Å

  • c = 16.339 (2) Å

  • β = 111.518 (11)°

  • V = 1682.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 173 (2) K

  • 0.13 × 0.09 × 0.07 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.877, Tmax = 0.931

  • 11731 measured reflections

  • 3145 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.098

  • S = 0.88

  • 3145 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C41 2.128 (7)
Sn1—O1 2.232 (4)
Sn1—Cl1 2.5567 (16)

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

We are interested in Lewis-acidic Sn(IV) compounds and their reactivity towards Lewis bases. Recently we have reported the synthesis and structure of {Zn[Sn(CH2SMe)4]0.5Cl2}n and Sn(CH2PPh2)4 (Ruth et al., 2007). In contrast to [SnCl4].[CH3SCH3]2 which forms an adduct in solid state with a six-coordinated Sn atom (Ruth et al., 2005), the Sn(IV) centers in {Zn[Sn(CH2SMe)4]0.5Cl2}n and Sn(CH2PPh2)4 are tetra-coordinated. However, Me3SnCl forms an adduct with Me3SnOH and H2O in which the Sn atoms possess the coordination number five. It is interesting to note that this adduct represents an intermediate in Me3SnCl hydrolysis (Lerner et al., 2005). We report here the X-ray crystal structure analysis of the title adduct [Ph2SnCl2].[tBu2MePO]2, (I). The synthesis of (I) was achieved by treatment of Ph2SnCl2 with two equivalents of tBu2MePO as indicated in the equation below.

Compound (I) has crystallographic inversion symmetry with just half a molecule in the asymmetric unit. The Sn atom is hexacoordinated by three pairs of different ligands in an octahedral fashion (Table 1). All ligand pairs of the same kind are mutually trans at the Sn atom (Fig. 1). As a consequence of the bulky substituents at the O atom the P—O—Sn angle is enlarged to 163.9 (3)°.

Related literature top

For related literature, see: Lerner et al. (2005); Ruth et al. (2005, 2007).

Experimental top

tBu2MePO (2.05 mmol) was added with stirring at ambient temperature to a solution of Ph2SnCl2 (0.58 mmol) in 25 ml THF. Colourless blocks of (I) were grown by storing this solution at room temperature for several weeks.

Refinement top

The H atoms were geometrically positioned (C—H = 0.95-0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry operator for generating equivalent atoms: (A) 1 - x, 1 - y, 1 - z.
Dichloridobis(di-tert-butylmethylphosphine oxide-κO)diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2Cl2(C9H21OP)2]F(000) = 724
Mr = 696.25Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4261 reflections
a = 12.1782 (19) Åθ = 3.5–25.4°
b = 9.0866 (8) ŵ = 1.04 mm1
c = 16.339 (2) ÅT = 173 K
β = 111.518 (11)°Block, colourless
V = 1682.0 (4) Å30.13 × 0.09 × 0.07 mm
Z = 2
Data collection top
Stoe IPDSII two-circle
diffractometer
3145 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 25.6°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1414
Tmin = 0.877, Tmax = 0.931k = 1011
11731 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0102P)2]
where P = (Fo2 + 2Fc2)/3
3145 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Sn(C6H5)2Cl2(C9H21OP)2]V = 1682.0 (4) Å3
Mr = 696.25Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.1782 (19) ŵ = 1.04 mm1
b = 9.0866 (8) ÅT = 173 K
c = 16.339 (2) Å0.13 × 0.09 × 0.07 mm
β = 111.518 (11)°
Data collection top
Stoe IPDSII two-circle
diffractometer
3145 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
1754 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.931Rint = 0.087
11731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.88Δρmax = 0.44 e Å3
3145 reflectionsΔρmin = 0.83 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.50000.50000.02649 (18)
Cl10.46725 (18)0.3097 (2)0.60405 (11)0.0361 (5)
P10.31774 (17)0.7748 (2)0.56073 (11)0.0271 (4)
O10.3737 (4)0.6468 (5)0.5312 (3)0.0300 (11)
C10.2236 (7)0.7021 (8)0.6188 (4)0.0340 (17)
C20.2381 (6)0.8878 (8)0.4633 (4)0.0337 (17)
C30.4234 (7)0.8947 (8)0.6369 (4)0.0360 (18)
H3A0.46840.83980.69030.054*
H3B0.38220.97680.65210.054*
H3C0.47740.93310.61000.054*
C110.3017 (7)0.5921 (9)0.6885 (5)0.043 (2)
H11A0.37210.64300.72820.064*
H11B0.32570.51140.65890.064*
H11C0.25680.55230.72250.064*
C120.1142 (8)0.6241 (10)0.5567 (5)0.058 (3)
H12A0.06560.69400.51260.086*
H12B0.06860.58500.59030.086*
H12C0.13800.54310.52730.086*
C130.1867 (8)0.8238 (9)0.6696 (5)0.045 (2)
H13A0.25740.87310.71010.068*
H13B0.14280.77980.70310.068*
H13C0.13660.89580.62790.068*
C210.1735 (8)0.7857 (10)0.3860 (5)0.054 (2)
H21A0.11370.72890.39940.081*
H21B0.23030.71820.37620.081*
H21C0.13510.84460.33290.081*
C220.3310 (6)0.9731 (9)0.4389 (4)0.036 (2)
H22A0.37441.03970.48710.054*
H22B0.29161.03040.38530.054*
H22C0.38620.90350.42880.054*
C230.1515 (7)0.9993 (15)0.4782 (5)0.064 (3)
H23A0.09180.94630.49380.096*
H23B0.11281.05580.42420.096*
H23C0.19501.06640.52610.096*
C410.3564 (7)0.4098 (7)0.3934 (4)0.0276 (16)
C420.2454 (7)0.3792 (8)0.3993 (5)0.0368 (18)
H420.23460.39830.45300.044*
C430.1523 (8)0.3224 (9)0.3291 (5)0.049 (2)
H430.07710.30990.33340.059*
C440.1696 (8)0.2832 (9)0.2512 (5)0.046 (2)
H440.10760.23880.20390.055*
C450.2763 (8)0.3097 (9)0.2440 (4)0.042 (2)
H450.28760.28450.19120.051*
C460.3695 (7)0.3738 (8)0.3140 (4)0.0347 (18)
H460.44240.39300.30740.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0255 (4)0.0305 (4)0.0254 (3)0.0007 (6)0.0116 (3)0.0013 (5)
Cl10.0442 (12)0.0352 (11)0.0335 (9)0.0015 (10)0.0198 (9)0.0010 (8)
P10.0226 (11)0.0324 (11)0.0262 (8)0.0000 (9)0.0086 (8)0.0023 (8)
O10.031 (3)0.029 (3)0.033 (2)0.006 (2)0.015 (2)0.002 (2)
C10.032 (5)0.037 (4)0.036 (4)0.005 (4)0.017 (3)0.010 (3)
C20.024 (4)0.045 (5)0.034 (4)0.001 (4)0.013 (3)0.003 (3)
C30.032 (5)0.052 (5)0.025 (3)0.003 (4)0.012 (3)0.000 (3)
C110.051 (6)0.039 (5)0.046 (4)0.005 (4)0.027 (4)0.004 (4)
C120.055 (6)0.072 (7)0.058 (5)0.030 (5)0.034 (5)0.027 (5)
C130.048 (6)0.052 (5)0.046 (4)0.006 (5)0.029 (4)0.003 (4)
C210.038 (5)0.078 (7)0.036 (4)0.003 (5)0.002 (4)0.001 (4)
C220.034 (4)0.040 (6)0.039 (3)0.015 (4)0.018 (3)0.009 (4)
C230.057 (6)0.087 (6)0.059 (4)0.056 (8)0.033 (4)0.026 (7)
C410.036 (5)0.021 (4)0.021 (3)0.000 (3)0.004 (3)0.004 (3)
C420.024 (4)0.047 (5)0.043 (4)0.009 (4)0.017 (4)0.013 (4)
C430.033 (5)0.052 (6)0.066 (5)0.000 (5)0.022 (4)0.000 (4)
C440.036 (5)0.041 (5)0.048 (4)0.002 (4)0.003 (4)0.006 (4)
C450.043 (5)0.047 (5)0.029 (4)0.004 (4)0.004 (4)0.001 (3)
C460.036 (5)0.032 (5)0.035 (4)0.007 (4)0.012 (4)0.008 (3)
Geometric parameters (Å, º) top
Sn1—C41i2.128 (7)C12—H12C0.9800
Sn1—C412.128 (7)C13—H13A0.9800
Sn1—O12.232 (4)C13—H13B0.9800
Sn1—O1i2.232 (4)C13—H13C0.9800
Sn1—Cl1i2.5567 (16)C21—H21A0.9800
Sn1—Cl12.5567 (16)C21—H21B0.9800
P1—O11.513 (4)C21—H21C0.9800
P1—C31.794 (7)C22—H22A0.9800
P1—C21.842 (7)C22—H22B0.9800
P1—C11.858 (7)C22—H22C0.9800
C1—C121.522 (10)C23—H23A0.9800
C1—C111.552 (10)C23—H23B0.9800
C1—C131.545 (9)C23—H23C0.9800
C2—C221.541 (10)C41—C461.402 (8)
C2—C211.533 (11)C41—C421.418 (10)
C2—C231.544 (11)C42—C431.383 (10)
C3—H3A0.9800C42—H420.9500
C3—H3B0.9800C43—C441.412 (10)
C3—H3C0.9800C43—H430.9500
C11—H11A0.9800C44—C451.367 (11)
C11—H11B0.9800C44—H440.9500
C11—H11C0.9800C45—C461.409 (10)
C12—H12A0.9800C45—H450.9500
C12—H12B0.9800C46—H460.9500
C41i—Sn1—C41180.0C1—C12—H12B109.5
C41i—Sn1—O190.6 (2)H12A—C12—H12B109.5
C41—Sn1—O189.4 (2)C1—C12—H12C109.5
C41i—Sn1—O1i89.4 (2)H12A—C12—H12C109.5
C41—Sn1—O1i90.6 (2)H12B—C12—H12C109.5
O1—Sn1—O1i180.0C1—C13—H13A109.5
C41i—Sn1—Cl1i90.10 (18)C1—C13—H13B109.5
C41—Sn1—Cl1i89.90 (18)H13A—C13—H13B109.5
O1—Sn1—Cl1i92.09 (12)C1—C13—H13C109.5
O1i—Sn1—Cl1i87.91 (12)H13A—C13—H13C109.5
C41i—Sn1—Cl189.90 (18)H13B—C13—H13C109.5
C41—Sn1—Cl190.10 (18)C2—C21—H21A109.5
O1—Sn1—Cl187.91 (12)C2—C21—H21B109.5
O1i—Sn1—Cl192.09 (12)H21A—C21—H21B109.5
Cl1i—Sn1—Cl1180.0C2—C21—H21C109.5
O1—P1—C3113.3 (3)H21A—C21—H21C109.5
O1—P1—C2108.0 (3)H21B—C21—H21C109.5
C3—P1—C2106.1 (3)C2—C22—H22A109.5
O1—P1—C1108.9 (3)C2—C22—H22B109.5
C3—P1—C1106.4 (3)H22A—C22—H22B109.5
C2—P1—C1114.3 (3)C2—C22—H22C109.5
P1—O1—Sn1163.9 (3)H22A—C22—H22C109.5
C12—C1—C11109.9 (7)H22B—C22—H22C109.5
C12—C1—C13109.6 (6)C2—C23—H23A109.5
C11—C1—C13106.7 (6)C2—C23—H23B109.5
C12—C1—P1112.3 (4)H23A—C23—H23B109.5
C11—C1—P1106.1 (5)C2—C23—H23C109.5
C13—C1—P1112.0 (5)H23A—C23—H23C109.5
C22—C2—C21107.1 (6)H23B—C23—H23C109.5
C22—C2—C23108.7 (7)C46—C41—C42116.8 (7)
C21—C2—C23110.7 (7)C46—C41—Sn1120.6 (5)
C22—C2—P1107.5 (5)C42—C41—Sn1122.6 (5)
C21—C2—P1108.9 (5)C43—C42—C41122.0 (6)
C23—C2—P1113.8 (4)C43—C42—H42119.0
P1—C3—H3A109.5C41—C42—H42119.0
P1—C3—H3B109.5C42—C43—C44119.6 (7)
H3A—C3—H3B109.5C42—C43—H43120.2
P1—C3—H3C109.5C44—C43—H43120.2
H3A—C3—H3C109.5C45—C44—C43119.6 (8)
H3B—C3—H3C109.5C45—C44—H44120.2
C1—C11—H11A109.5C43—C44—H44120.2
C1—C11—H11B109.5C44—C45—C46120.7 (7)
H11A—C11—H11B109.5C44—C45—H45119.6
C1—C11—H11C109.5C46—C45—H45119.6
H11A—C11—H11C109.5C41—C46—C45121.1 (7)
H11B—C11—H11C109.5C41—C46—H46119.4
C1—C12—H12A109.5C45—C46—H46119.4
C3—P1—O1—Sn121.3 (11)C1—P1—C2—C2179.8 (6)
C2—P1—O1—Sn195.9 (10)O1—P1—C2—C23165.5 (7)
C1—P1—O1—Sn1139.5 (9)C3—P1—C2—C2372.7 (7)
C41i—Sn1—O1—P131.6 (10)C1—P1—C2—C2344.2 (8)
C41—Sn1—O1—P1148.4 (10)O1—Sn1—C41—C46142.0 (5)
Cl1i—Sn1—O1—P158.5 (10)O1i—Sn1—C41—C4638.0 (5)
Cl1—Sn1—O1—P1121.5 (10)Cl1i—Sn1—C41—C4649.9 (5)
O1—P1—C1—C1269.5 (6)Cl1—Sn1—C41—C46130.1 (5)
C3—P1—C1—C12168.1 (6)O1—Sn1—C41—C4239.9 (6)
C2—P1—C1—C1251.4 (7)O1i—Sn1—C41—C42140.1 (6)
O1—P1—C1—C1150.5 (5)Cl1i—Sn1—C41—C42132.0 (6)
C3—P1—C1—C1171.9 (5)Cl1—Sn1—C41—C4248.0 (6)
C2—P1—C1—C11171.4 (5)C46—C41—C42—C432.7 (11)
O1—P1—C1—C13166.6 (5)Sn1—C41—C42—C43179.1 (6)
C3—P1—C1—C1344.2 (6)C41—C42—C43—C444.7 (12)
C2—P1—C1—C1372.5 (6)C42—C43—C44—C453.8 (12)
O1—P1—C2—C2274.1 (5)C43—C44—C45—C460.8 (12)
C3—P1—C2—C2247.7 (5)C42—C41—C46—C450.3 (10)
C1—P1—C2—C22164.5 (5)Sn1—C41—C46—C45178.0 (6)
O1—P1—C2—C2141.6 (6)C44—C45—C46—C411.2 (12)
C3—P1—C2—C21163.4 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2Cl2(C9H21OP)2]
Mr696.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.1782 (19), 9.0866 (8), 16.339 (2)
β (°) 111.518 (11)
V3)1682.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.13 × 0.09 × 0.07
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.877, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
11731, 3145, 1754
Rint0.087
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.098, 0.88
No. of reflections3145
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.83

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Sn1—C412.128 (7)Sn1—Cl12.5567 (16)
Sn1—O12.232 (4)
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLerner, H.-W., Haghiri Ilkechi, A., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413–415.  CAS Google Scholar
First citationRuth, K., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, m1852–m1853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuth, K., Müller, M., Bolte, M., Bats, J. W., Wagner, M. & Lerner, H.-W. (2007). Z. Anorg. Allg. Chem. 633, 1485–1489.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds