organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1146-o1147

1,10-Phenanthrolinium 4-chloro-2-hy­droxy­benzoate–1,10-phenanthroline–4-chloro-2-hy­droxy­benzoic acid (1/1/1)

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 19 May 2008; accepted 19 May 2008; online 24 May 2008)

The title compound, C12H9N2+·C7H4ClO3·C12H8N2·C7H5ClO3, contains one phenanthrolinium (Hphen) cation, one phenanthroline (phen) mol­ecule, one 4-chloro-2-hydroxy­benzoate anion (hcba) and one 4-chloro-2-hydroxy­benzoic acid (Hhcba) mol­ecule in the asymmetric unit. The phen mol­ecule is approximately parallel to Hphen, making a dihedral angle of 1.98 (6)°. The centroid–centroid distance between pyridine rings of adjacent phen and Hphen species is 3.7718 (15) Å, and that between the benzene and pyridine rings of adjacent phen and Hphen species is 3.7922 (16) Å, indicative of ππ stacking inter­actions. The crystal structure contains an extensive network of classical (O—H⋯O, N—H⋯N and O—H⋯Cl) and weak (C—H⋯O and C—H⋯N) hydrogen bonds. Finally, C—H⋯π inter­actions are seen between Hphen and hcba and between phen and Hhcba in the crystal structure. The hydroxy group of the anion is disordered over the two sites ortho to the carboxylate group in a 0.75:0.25 ratio.

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Pan et al. (2006[Pan, T.-T., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, m1597-m1599.]). For a related structure, see: Fu et al. (2005[Fu, A.-Y., Wang, D.-Q. & Zhang, C.-L. (2005). Acta Cryst. E61, o3119-o3121.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2+·C7H4ClO3·C12H8N2·C7H5ClO3

  • Mr = 705.53

  • Orthorhombic, P 21 21 21

  • a = 8.0627 (6) Å

  • b = 19.6005 (15) Å

  • c = 20.7929 (17) Å

  • V = 3286.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 (2) K

  • 0.43 × 0.37 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 37126 measured reflections

  • 6394 independent reflections

  • 4326 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 0.98

  • 6394 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2739 Friedel pairs

  • Flack parameter: −0.09 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5 0.88 1.61 2.484 (2) 173
N1—H1N⋯N3i 0.85 2.14 2.915 (3) 153
O3—H3A⋯Cl1ii 0.95 2.66 3.1714 (19) 114
O3—H3A⋯O2 0.95 1.86 2.603 (3) 133
O6A—H6A⋯O4 0.94 1.74 2.584 (3) 148
O6B—H6B⋯O5 0.82 1.80 2.494 (7) 142
C5—H5⋯O2iii 0.93 2.50 3.404 (3) 164
C12—H12⋯O4ii 0.93 2.51 3.381 (3) 157
C21—H21⋯N2i 0.93 2.51 3.345 (4) 150
C22—H22⋯O1iv 0.93 2.54 3.220 (4) 130
C37—H37⋯O4 0.93 2.60 3.430 (3) 150
C25—H25⋯Cg1 0.93 2.65 3.571 (3) 174
C40—H40⋯Cg2 0.93 2.63 3.489 (3) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C8–C13 benzene ring and Cg2 is the centroid of the C1–C6 benzene ring.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Pan et al. 2006), the title compound, (I), incorporating 1,10-phenanthroline (phen) has been prepared and its crystal structure is reported here.

The asymmetric unit of (I) contains two neutral molecules, one cation and one anion (Fig. 1), similar to the situation in 1,10-phenanthrolinium 6-carboxypyridine-2-carboxylate 1,10-phenanthroline pyridine-2,6-dicarboxylic acid (Fu et al., 2005). The significant difference in C-O bond distances [1.312 (3) and 1.239 (3)Å] suggests that the C7-carboxyl group is protonated in the crystal. The neutral 4-chloro-2-hydroxybenzoic acid (Hhcba) is hydrogen bonded with the 4-chloro-2-hydroxybenzoate anion (hcba) (Fig. 1 and Table 2). The neutral phenathroline (phen) molecule is approximately parallel to the protonated phenathroline cation (Hphen), with a dihedral angle of 1.98 (6)°. Fig. 2 shows the nearly parallel arrangement of phen and Hphen. The centroid-to-centroid distances between N2-pyridine and N4-pyridine rings is 3.7718 (15) Å; the centroid-to-centroid distance between N1-pyridine and C37i-benzene rings is 3.7922 (16) Å [symmetry code: (i) 1 + x,y,z]. They suggest the existence of π-π stacking between phen and Hphen.

The crystal structure contains C—H···π interactions between Hphen and hcba and between phen and Hhcba (Fig. 1). H25···Cg1 = 2.64 Å, C25—H25···Cg1 = 174° and C25···Cg1 = 3.571 (2) Å (where Cg1 is the centroid of the C8-benzene ring); H40···Cg2 = 2.63 Å, C40—H40···Cg2 = 153° and C40···Cg2 = 3.489 (3) Å (where Cg2 is the centroid of the C1-benzene ring).

Related literature top

For general background, see: Su & Xu (2004); Pan et al. (2006). For a related structure, see: Fu et al. (2005).

Experimental top

4-chloro-2-hydroxybenzoic acid (0.17 g, 1 mmol) and 1,10-phenanthroline (0.20 g, 1 mmol) were dissolved in ethanol-water (10 ml, 7:3 v/v) at room temperature. The solution was filtered and red-brown chunks of (I) were obtained from the filtrate after 3 d.

Refinement top

The O6-hydroxyl group is disordered over two sites; occupancies were initially refined, and fixed as 0.75:0.25 at final cycles of refinement. The H atoms bonded to N1 atom and hydroxyl H atoms were located in a difference Fourier map and refined as riding in their as-found relative position, with Uiso(H) = 1.5Ueq(O,N). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The minor component of the disordered 4-chloro-2-hydroxybenzoate has been omitted for clarity. Dashed lines indicate hydrogen bonding; dotted lines indicate C—H···π interaction.
[Figure 2] Fig. 2. A packing diagram for (I) showing π-π stacking between phen and Hphen ring systems [symmetry code: (i) 1 + x,y,z]. The H atoms are omitted for clarity.
1,10-Phenanthrolinium 4-chloro-2-hydroxybenzoate–1,10-phenanthroline– 4-chloro-2-hydroxybenzoic acid (1/1/1) top
Crystal data top
C12H9N2+·C7H4ClO3·C12H8N2·C7H5ClO3F(000) = 1456
Mr = 705.53Dx = 1.426 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3820 reflections
a = 8.0627 (6) Åθ = 2.0–25.0°
b = 19.6005 (15) ŵ = 0.25 mm1
c = 20.7929 (17) ÅT = 295 K
V = 3286.0 (4) Å3Chunk, red brown
Z = 40.43 × 0.37 × 0.32 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4326 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.0°, θmin = 1.4°
Detector resolution: 10.00 pixels mm-1h = 99
ω scansk = 2424
37126 measured reflectionsl = 2324
6394 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
6394 reflectionsΔρmax = 0.24 e Å3
460 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack (1983), 2739 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (5)
Crystal data top
C12H9N2+·C7H4ClO3·C12H8N2·C7H5ClO3V = 3286.0 (4) Å3
Mr = 705.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0627 (6) ŵ = 0.25 mm1
b = 19.6005 (15) ÅT = 295 K
c = 20.7929 (17) Å0.43 × 0.37 × 0.32 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4326 reflections with I > 2σ(I)
37126 measured reflectionsRint = 0.054
6394 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.24 e Å3
S = 0.98Δρmin = 0.15 e Å3
6394 reflectionsAbsolute structure: Flack (1983), 2739 Friedel pairs
460 parametersAbsolute structure parameter: 0.09 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.36861 (10)0.67865 (4)0.46601 (4)0.0854 (2)
Cl21.02809 (9)0.33001 (4)0.13135 (4)0.0900 (3)
N10.7137 (3)0.28257 (9)0.44997 (10)0.0559 (5)
H1N0.69230.27910.48970.084*
N20.5485 (3)0.38638 (10)0.51279 (11)0.0633 (6)
N30.2373 (3)0.26039 (11)0.41612 (11)0.0681 (6)
N40.0909 (3)0.36501 (10)0.48502 (10)0.0666 (6)
O10.1928 (2)0.60893 (10)0.24138 (10)0.0753 (5)
H1A0.28610.59600.22360.113*
O20.3673 (3)0.63537 (12)0.32124 (11)0.0952 (7)
O30.2480 (2)0.66890 (12)0.43318 (11)0.0951 (6)
H3A0.34180.66280.40620.143*
O40.2843 (2)0.47959 (10)0.15141 (10)0.0746 (5)
O50.4445 (2)0.56412 (9)0.18697 (9)0.0726 (5)
C10.0776 (3)0.64335 (12)0.33999 (13)0.0547 (6)
C20.0958 (3)0.66070 (12)0.40499 (14)0.0611 (7)
C30.0418 (3)0.67074 (13)0.44405 (13)0.0626 (7)
H30.02910.68100.48740.075*
C40.1972 (3)0.66515 (12)0.41731 (13)0.0594 (7)
C50.2199 (3)0.64899 (13)0.35319 (14)0.0648 (7)
H50.32610.64570.33600.078*
C60.0819 (3)0.63782 (13)0.31511 (13)0.0594 (7)
H60.09610.62640.27200.071*
C70.2243 (4)0.62942 (13)0.30020 (16)0.0648 (7)
C80.5737 (3)0.46147 (12)0.15467 (10)0.0501 (6)
C90.5603 (3)0.39317 (13)0.13526 (12)0.0595 (6)
H90.45640.37470.12670.071*0.25
C100.7005 (3)0.35299 (13)0.12879 (13)0.0656 (7)
H100.69120.30740.11680.079*
C110.8526 (3)0.38097 (12)0.14023 (13)0.0589 (6)
C120.8724 (3)0.44813 (13)0.15866 (12)0.0569 (6)
H120.97730.46630.16600.068*
C130.7316 (3)0.48752 (13)0.16586 (12)0.0538 (6)
H130.74260.53280.17860.065*0.75
C140.4216 (3)0.50398 (14)0.16457 (12)0.0581 (7)
C210.7978 (4)0.23170 (13)0.42364 (13)0.0662 (7)
H210.82930.19460.44870.079*
C220.8394 (3)0.23341 (14)0.35891 (15)0.0700 (8)
H220.89810.19770.34030.084*
C230.7924 (4)0.28875 (15)0.32288 (13)0.0673 (7)
H230.81820.29010.27930.081*
C240.7056 (3)0.34341 (12)0.35095 (12)0.0560 (6)
C250.6560 (4)0.40270 (15)0.31662 (14)0.0722 (8)
H250.67980.40590.27300.087*
C260.5762 (4)0.45383 (15)0.34530 (15)0.0740 (8)
H260.54590.49200.32140.089*
C270.5366 (3)0.45098 (12)0.41213 (14)0.0618 (7)
C280.4538 (4)0.50332 (13)0.44537 (19)0.0791 (9)
H280.42060.54240.42360.095*
C290.4222 (4)0.49694 (14)0.50952 (18)0.0839 (9)
H290.36880.53170.53180.101*
C300.4707 (4)0.43793 (14)0.54105 (15)0.0779 (8)
H300.44720.43420.58470.093*
C310.5796 (3)0.39333 (11)0.44856 (12)0.0520 (6)
C320.6662 (3)0.33901 (11)0.41681 (11)0.0490 (6)
C330.3118 (4)0.21255 (15)0.38143 (17)0.0835 (10)
H330.33790.17170.40190.100*
C340.3539 (4)0.21872 (16)0.31680 (16)0.0803 (9)
H340.40770.18340.29540.096*
C350.3145 (4)0.27756 (15)0.28567 (15)0.0737 (8)
H350.34090.28310.24240.088*
C360.2336 (3)0.32990 (13)0.31938 (12)0.0565 (6)
C370.1823 (3)0.39218 (13)0.28871 (13)0.0646 (7)
H370.20460.39870.24530.077*
C380.1031 (4)0.44091 (13)0.32165 (12)0.0651 (7)
H380.07160.48070.30060.078*
C390.0659 (3)0.43319 (11)0.38807 (11)0.0537 (6)
C400.0182 (3)0.48382 (13)0.42393 (14)0.0649 (7)
H400.05840.52270.40360.078*
C410.0399 (4)0.47545 (13)0.48783 (15)0.0730 (8)
H410.09130.50910.51220.088*
C420.0156 (4)0.41596 (15)0.51631 (14)0.0760 (9)
H420.00050.41100.56030.091*
C430.1165 (3)0.37377 (11)0.42085 (11)0.0522 (6)
C440.1987 (3)0.31975 (12)0.38519 (11)0.0532 (6)
O6A0.4152 (3)0.36325 (13)0.12245 (13)0.0825 (8)0.75
H6A0.33250.39580.13170.124*0.75
O6B0.7525 (8)0.5525 (3)0.1865 (4)0.0664 (19)0.25
H6B0.66500.56740.20020.100*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0676 (4)0.0996 (5)0.0890 (6)0.0008 (4)0.0144 (4)0.0178 (4)
Cl20.0706 (5)0.0762 (5)0.1232 (7)0.0177 (4)0.0119 (4)0.0287 (5)
N10.0713 (13)0.0502 (11)0.0463 (12)0.0009 (10)0.0083 (11)0.0075 (9)
N20.0744 (16)0.0533 (12)0.0623 (15)0.0072 (11)0.0111 (12)0.0037 (11)
N30.0927 (18)0.0526 (12)0.0590 (14)0.0024 (12)0.0153 (13)0.0074 (11)
N40.0941 (18)0.0588 (12)0.0469 (14)0.0156 (12)0.0046 (12)0.0017 (10)
O10.0561 (11)0.0960 (13)0.0736 (14)0.0172 (10)0.0067 (10)0.0066 (11)
O20.0512 (12)0.1293 (18)0.1050 (17)0.0025 (12)0.0000 (12)0.0156 (14)
O30.0612 (13)0.1030 (15)0.1212 (18)0.0034 (12)0.0074 (12)0.0249 (14)
O40.0514 (11)0.0909 (14)0.0816 (14)0.0026 (10)0.0025 (10)0.0044 (10)
O50.0605 (12)0.0680 (12)0.0893 (14)0.0038 (10)0.0147 (10)0.0033 (10)
C10.0466 (14)0.0511 (13)0.0666 (18)0.0076 (11)0.0001 (13)0.0036 (12)
C20.0502 (16)0.0534 (14)0.0796 (19)0.0007 (12)0.0112 (14)0.0017 (13)
C30.0628 (18)0.0589 (14)0.0660 (17)0.0047 (13)0.0036 (14)0.0064 (13)
C40.0600 (16)0.0477 (13)0.0705 (19)0.0023 (12)0.0074 (14)0.0026 (13)
C50.0496 (15)0.0712 (17)0.074 (2)0.0037 (13)0.0044 (14)0.0064 (14)
C60.0514 (16)0.0653 (15)0.0615 (16)0.0066 (12)0.0045 (13)0.0048 (13)
C70.0534 (18)0.0607 (16)0.080 (2)0.0092 (13)0.0016 (16)0.0094 (14)
C80.0544 (15)0.0584 (14)0.0376 (13)0.0047 (12)0.0013 (11)0.0080 (10)
C90.0557 (16)0.0701 (16)0.0525 (16)0.0088 (14)0.0026 (13)0.0023 (13)
C100.0682 (18)0.0590 (15)0.0695 (18)0.0043 (14)0.0047 (15)0.0086 (13)
C110.0594 (16)0.0622 (15)0.0551 (16)0.0072 (13)0.0017 (13)0.0042 (12)
C120.0500 (14)0.0604 (15)0.0602 (16)0.0021 (12)0.0011 (12)0.0003 (12)
C130.0563 (16)0.0549 (14)0.0502 (16)0.0038 (12)0.0023 (12)0.0025 (11)
C140.0563 (17)0.0699 (17)0.0481 (16)0.0007 (14)0.0084 (13)0.0161 (13)
C210.0786 (19)0.0538 (15)0.066 (2)0.0058 (14)0.0056 (16)0.0057 (13)
C220.0707 (19)0.0711 (17)0.068 (2)0.0066 (14)0.0054 (15)0.0076 (15)
C230.0681 (17)0.087 (2)0.0469 (16)0.0143 (16)0.0028 (14)0.0019 (14)
C240.0586 (15)0.0609 (15)0.0486 (16)0.0076 (12)0.0043 (12)0.0065 (12)
C250.080 (2)0.084 (2)0.0525 (17)0.0113 (17)0.0129 (15)0.0186 (15)
C260.079 (2)0.0660 (17)0.077 (2)0.0018 (16)0.0179 (17)0.0259 (16)
C270.0569 (16)0.0526 (14)0.076 (2)0.0056 (12)0.0137 (14)0.0085 (14)
C280.073 (2)0.0495 (15)0.114 (3)0.0013 (14)0.017 (2)0.0003 (16)
C290.084 (2)0.0571 (17)0.111 (3)0.0002 (16)0.008 (2)0.0194 (18)
C300.090 (2)0.0618 (17)0.082 (2)0.0074 (16)0.0166 (17)0.0185 (16)
C310.0497 (14)0.0463 (12)0.0598 (17)0.0098 (11)0.0022 (13)0.0012 (12)
C320.0507 (14)0.0503 (13)0.0461 (15)0.0090 (11)0.0019 (11)0.0062 (11)
C330.107 (3)0.0593 (17)0.084 (2)0.0125 (17)0.023 (2)0.0040 (16)
C340.085 (2)0.0715 (19)0.084 (2)0.0115 (16)0.0041 (18)0.0114 (17)
C350.076 (2)0.0766 (19)0.0690 (19)0.0025 (15)0.0000 (16)0.0024 (16)
C360.0614 (15)0.0573 (15)0.0508 (16)0.0067 (13)0.0046 (12)0.0011 (13)
C370.078 (2)0.0686 (17)0.0472 (16)0.0104 (15)0.0025 (14)0.0102 (13)
C380.086 (2)0.0558 (15)0.0536 (17)0.0028 (14)0.0090 (15)0.0106 (13)
C390.0597 (16)0.0522 (14)0.0492 (16)0.0082 (12)0.0088 (12)0.0023 (12)
C400.0722 (18)0.0515 (14)0.071 (2)0.0046 (13)0.0034 (15)0.0009 (13)
C410.085 (2)0.0613 (16)0.072 (2)0.0110 (15)0.0050 (16)0.0137 (15)
C420.107 (2)0.0732 (18)0.0478 (17)0.0254 (18)0.0091 (16)0.0070 (15)
C430.0641 (16)0.0487 (13)0.0437 (15)0.0140 (11)0.0106 (12)0.0043 (11)
C440.0599 (14)0.0501 (13)0.0495 (15)0.0065 (12)0.0114 (12)0.0003 (12)
O6A0.0541 (15)0.0888 (17)0.105 (2)0.0090 (14)0.0027 (15)0.0180 (16)
O6B0.058 (4)0.048 (4)0.093 (5)0.006 (3)0.001 (4)0.022 (4)
Geometric parameters (Å, º) top
Cl1—C41.734 (3)C21—H210.9300
Cl2—C111.742 (3)C22—C231.372 (4)
N1—C211.324 (3)C22—H220.9300
N1—C321.359 (3)C23—C241.406 (4)
N1—H1N0.8464C23—H230.9300
N2—C301.327 (3)C24—C321.408 (3)
N2—C311.366 (3)C24—C251.421 (4)
N3—C331.327 (4)C25—C261.332 (4)
N3—C441.365 (3)C25—H250.9300
N4—C421.338 (4)C26—C271.427 (4)
N4—C431.361 (3)C26—H260.9300
C7—O11.312 (3)C27—C311.404 (3)
C7—O21.239 (3)C27—C281.405 (4)
O1—H1A0.8758C28—C291.364 (4)
O3—C21.370 (3)C28—H280.9300
O3—H3A0.9483C29—C301.386 (4)
O4—C141.236 (3)C29—H290.9300
O5—C141.281 (3)C30—H300.9300
C1—C61.391 (3)C31—C321.434 (3)
C1—C21.401 (4)C33—C341.391 (4)
C1—C71.469 (4)C33—H330.9300
C2—C31.389 (4)C34—C351.360 (4)
C3—C41.375 (4)C34—H340.9300
C3—H30.9300C35—C361.403 (4)
C4—C51.382 (4)C35—H350.9300
C5—C61.383 (4)C36—C441.411 (3)
C5—H50.9300C36—C371.438 (4)
C6—H60.9300C37—C381.338 (4)
C8—C131.391 (3)C37—H370.9300
C8—C91.402 (3)C38—C391.421 (3)
C8—C141.496 (3)C38—H380.9300
C9—O6A1.336 (3)C39—C431.410 (3)
C9—C101.384 (3)C39—C401.415 (3)
C9—H90.9300C40—C411.350 (4)
C10—C111.364 (3)C40—H400.9300
C10—H100.9300C41—C421.382 (4)
C11—C121.380 (3)C41—H410.9300
C12—C131.381 (3)C42—H420.9300
C12—H120.9300C43—C441.453 (3)
C13—O6B1.354 (6)O6A—H6A0.9422
C13—H130.9300O6B—H6B0.8159
C21—C221.388 (4)
C21—N1—C32123.2 (2)C23—C24—C25123.7 (3)
C21—N1—H1N116.6C32—C24—C25118.3 (2)
C32—N1—H1N120.2C26—C25—C24121.8 (3)
C30—N2—C31116.4 (2)C26—C25—H25119.1
C33—N3—C44116.7 (2)C24—C25—H25119.1
C42—N4—C43116.8 (2)C25—C26—C27121.0 (3)
C7—O1—H1A108.4C25—C26—H26119.5
C2—O3—H3A116.5C27—C26—H26119.5
C6—C1—C2118.3 (2)C31—C27—C28116.1 (3)
C6—C1—C7121.4 (3)C31—C27—C26120.1 (3)
C2—C1—C7120.3 (2)C28—C27—C26123.8 (3)
O3—C2—C3116.7 (2)C29—C28—C27120.2 (3)
O3—C2—C1122.3 (3)C29—C28—H28119.9
C3—C2—C1121.0 (2)C27—C28—H28119.9
C4—C3—C2118.7 (3)C28—C29—C30119.1 (3)
C4—C3—H3120.7C28—C29—H29120.4
C2—C3—H3120.7C30—C29—H29120.4
C3—C4—C5122.0 (3)N2—C30—C29124.0 (3)
C3—C4—Cl1118.6 (2)N2—C30—H30118.0
C5—C4—Cl1119.5 (2)C29—C30—H30118.0
C4—C5—C6118.8 (3)N2—C31—C27124.2 (2)
C4—C5—H5120.6N2—C31—C32117.7 (2)
C6—C5—H5120.6C27—C31—C32118.0 (2)
C5—C6—C1121.3 (3)N1—C32—C24118.7 (2)
C5—C6—H6119.4N1—C32—C31120.5 (2)
C1—C6—H6119.4C24—C32—C31120.8 (2)
O2—C7—O1122.6 (3)N3—C33—C34125.0 (3)
O2—C7—C1122.2 (3)N3—C33—H33117.5
O1—C7—C1115.2 (3)C34—C33—H33117.5
C13—C8—C9118.0 (2)C35—C34—C33118.4 (3)
C13—C8—C14121.5 (2)C35—C34—H34120.8
C9—C8—C14120.5 (2)C33—C34—H34120.8
O6A—C9—C10116.5 (2)C34—C35—C36119.4 (3)
O6A—C9—C8122.9 (3)C34—C35—H35120.3
C10—C9—C8120.5 (2)C36—C35—H35120.3
C10—C9—H9119.7C35—C36—C44118.3 (2)
C8—C9—H9119.7C35—C36—C37122.2 (2)
C11—C10—C9119.2 (2)C44—C36—C37119.5 (2)
C11—C10—H10120.4C38—C37—C36121.1 (2)
C9—C10—H10120.4C38—C37—H37119.5
C10—C11—C12122.4 (2)C36—C37—H37119.5
C10—C11—Cl2118.8 (2)C37—C38—C39121.5 (2)
C12—C11—Cl2118.8 (2)C37—C38—H38119.3
C11—C12—C13117.9 (2)C39—C38—H38119.3
C11—C12—H12121.1C43—C39—C40117.6 (2)
C13—C12—H12121.1C43—C39—C38119.8 (2)
O6B—C13—C12117.2 (4)C40—C39—C38122.6 (2)
O6B—C13—C8120.8 (4)C41—C40—C39119.7 (3)
C12—C13—C8121.9 (2)C41—C40—H40120.1
C12—C13—H13119.0C39—C40—H40120.1
C8—C13—H13119.0C40—C41—C42118.8 (3)
O4—C14—O5124.4 (3)C40—C41—H41120.6
O4—C14—C8119.2 (2)C42—C41—H41120.6
O5—C14—C8116.4 (2)N4—C42—C41124.6 (3)
N1—C21—C22120.4 (2)N4—C42—H42117.7
N1—C21—H21119.8C41—C42—H42117.7
C22—C21—H21119.8N4—C43—C39122.3 (2)
C23—C22—C21118.8 (3)N4—C43—C44118.5 (2)
C23—C22—H22120.6C39—C43—C44119.2 (2)
C21—C22—H22120.6N3—C44—C36122.1 (2)
C22—C23—C24120.9 (3)N3—C44—C43119.0 (2)
C22—C23—H23119.6C36—C44—C43118.9 (2)
C24—C23—H23119.6C9—O6A—H6A106.4
C23—C24—C32118.0 (2)C13—O6B—H6B109.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O50.881.612.484 (2)173
N1—H1N···N3i0.852.142.915 (3)153
O3—H3A···Cl1ii0.952.663.1714 (19)114
O3—H3A···O20.951.862.603 (3)133
O6A—H6A···O40.941.742.584 (3)148
O6B—H6B···O50.821.802.494 (7)142
C5—H5···O2iii0.932.503.404 (3)164
C12—H12···O4ii0.932.513.381 (3)157
C21—H21···N2i0.932.513.345 (4)150
C22—H22···O1iv0.932.543.220 (4)130
C37—H37···O40.932.603.430 (3)150
C25—H25···Cg10.932.653.571 (3)174
C40—H40···Cg20.932.633.489 (3)154
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9N2+·C7H4ClO3·C12H8N2·C7H5ClO3
Mr705.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)8.0627 (6), 19.6005 (15), 20.7929 (17)
V3)3286.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.43 × 0.37 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37126, 6394, 4326
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 0.98
No. of reflections6394
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.15
Absolute structureFlack (1983), 2739 Friedel pairs
Absolute structure parameter0.09 (5)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O50.881.612.484 (2)173
N1—H1N···N3i0.852.142.915 (3)153
O3—H3A···Cl1ii0.952.663.1714 (19)114
O3—H3A···O20.951.862.603 (3)133
O6A—H6A···O40.941.742.584 (3)148
O6B—H6B···O50.821.802.494 (7)142
C5—H5···O2iii0.932.503.404 (3)164
C12—H12···O4ii0.932.513.381 (3)157
C21—H21···N2i0.932.513.345 (4)150
C22—H22···O1iv0.932.543.220 (4)130
C37—H37···O40.932.603.430 (3)150
C25—H25···Cg10.932.64623.571 (3)174
C40—H40···Cg20.932.63243.489 (3)154
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, A.-Y., Wang, D.-Q. & Zhang, C.-L. (2005). Acta Cryst. E61, o3119–o3121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPan, T.-T., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, m1597–m1599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1146-o1147
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds