organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4,6-di­chloro­pyridine-3-carboxyl­ate

aSchool of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bJinan Sijian (Group) Co. Ltd, Jinan 250031, People's Republic of China
*Correspondence e-mail: yima_2008@yahoo.cn

(Received 18 April 2008; accepted 24 April 2008; online 3 May 2008)

The title compound, C7H5Cl2NO2, crystallizes with two independent mol­ecules in the asymmetric unit. The bond lengths and angles in both mol­ecules are within normal ranges. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the [010] plane.

Related literature

For details of the biological activity of the title compound, see: Wallace et al. (2006[Wallace, E., Hurley, B., Yang, H. W., Lyssikatos, J. & Blake, J. (2006). United States Patent US 7 144 907.]); Bondinell et al. (2002[Bondinell, W. E., Holt, D. A., Lago, M. A., Neeb, M. J. & Semones, M. A. (2002). World Wide Patent. WO 02 076 463.]). For a related structure, see: McArdle et al. (1982[McArdle, J. V., de Laubenfels, E., Shorter, A. L. & Ammon, H. L. (1982). Polyhedron, 1, 471-474.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5Cl2NO2

  • Mr = 206.02

  • Monoclinic, P 21 /c

  • a = 8.033 (4) Å

  • b = 18.974 (9) Å

  • c = 11.240 (6) Å

  • β = 95.224 (8)°

  • V = 1705.9 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 (2) K

  • 0.45 × 0.19 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.739, Tmax = 0.958

  • 8532 measured reflections

  • 3012 independent reflections

  • 2289 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.135

  • S = 1.08

  • 3012 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O3i 0.93 2.41 3.309 (4) 162
C11—H11A⋯O2ii 0.93 2.60 3.513 (4) 168
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Methyl 4,6-dichloropyridine-3-carboxylate is a useful intermediate for the synthesis of different kinase inhibitors (Wallace et al., 2006; Bondinell et al., 2002). In this paper, we report the crystal structure of the title compound (I).

Compound (I) crystallizes with two independent molecules in the asymmetric unit (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (McArdle et al., 1982). The dihedral angles between the planes of the methoxycarbonyl group (C1/C2/O1/O2; C8/C9/O3/O4) and pyridine rings in the two independent molecules are 10.9 (2) and 8.1 (4)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds link the molecules into layers parallel to the b axis.

Related literature top

For the biological activity of the title compound, see: Wallace et al. (2006); Bondinell et al. (2002). For a related structure, see: McArdle et al. (1982).

Experimental top

Methyl 4, 6-dichloropyridine-3-carboxylate was synthesized from Methyl 4, 6-dihydroxypyridine-3-carboxylate via chlorination with POCl3. The desired compound was obtained as a low melting yellow solid in 89% yield. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in a hexane/dichloromethane mixture (1: 4 v/v) at room temperature over a period of one week.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
Methyl 4,6-dichloropyridine-3-carboxylate top
Crystal data top
C7H5Cl2NO2F(000) = 832
Mr = 206.02Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1274 reflections
a = 8.033 (4) Åθ = 2.8–27.9°
b = 18.974 (9) ŵ = 0.72 mm1
c = 11.240 (6) ÅT = 298 K
β = 95.224 (8)°Block, colorless
V = 1705.9 (15) Å30.45 × 0.19 × 0.06 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3012 independent reflections
Radiation source: fine-focus sealed tube2289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.739, Tmax = 0.958k = 1622
8532 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3441P]
where P = (Fo2 + 2Fc2)/3
3012 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H5Cl2NO2V = 1705.9 (15) Å3
Mr = 206.02Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.033 (4) ŵ = 0.72 mm1
b = 18.974 (9) ÅT = 298 K
c = 11.240 (6) Å0.45 × 0.19 × 0.06 mm
β = 95.224 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3012 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2289 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.958Rint = 0.035
8532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
3012 reflectionsΔρmin = 0.18 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31475 (11)0.33695 (5)0.64891 (7)0.0715 (3)
Cl40.81189 (12)0.14450 (4)1.15267 (7)0.0730 (3)
Cl30.49419 (14)0.01243 (5)0.78099 (8)0.0883 (4)
Cl20.16454 (16)0.07877 (5)0.49234 (11)0.1033 (4)
O40.0012 (3)0.39718 (12)0.3185 (2)0.0810 (7)
O10.6147 (3)0.33347 (11)0.9518 (2)0.0761 (7)
C30.6515 (3)0.21244 (15)0.9614 (2)0.0494 (7)
C40.5571 (4)0.20765 (17)0.8514 (3)0.0629 (8)
H4A0.52530.24970.81330.075*
O20.7987 (3)0.29383 (12)1.0946 (2)0.0859 (8)
C60.6496 (4)0.08658 (16)0.9608 (3)0.0586 (8)
H6A0.67990.04340.99550.070*
N10.5088 (4)0.14837 (15)0.7965 (2)0.0676 (7)
C100.1250 (3)0.30967 (15)0.4395 (2)0.0496 (7)
C110.0479 (4)0.25996 (16)0.3617 (3)0.0570 (8)
H11A0.01520.27650.29400.068*
C130.2303 (4)0.21170 (16)0.5586 (3)0.0585 (8)
H13A0.29240.19300.62510.070*
O30.1841 (4)0.43167 (13)0.4631 (2)0.1010 (10)
C50.5558 (4)0.09031 (17)0.8522 (3)0.0603 (8)
C70.6965 (4)0.14869 (15)1.0159 (2)0.0504 (7)
C90.1096 (4)0.38562 (17)0.4109 (3)0.0574 (8)
C10.6574 (6)0.40446 (18)0.9884 (4)0.0940 (13)
H1B0.58890.43710.94050.141*
H1C0.77300.41310.97810.141*
H1D0.63880.41051.07100.141*
N20.0578 (3)0.19055 (14)0.3773 (2)0.0640 (7)
C140.2165 (4)0.28322 (15)0.5410 (2)0.0505 (7)
C20.6989 (4)0.28237 (16)1.0116 (3)0.0552 (7)
C80.0218 (5)0.46966 (19)0.2809 (3)0.0893 (12)
H8A0.10380.47190.21330.134*
H8B0.08230.48830.25910.134*
H8C0.05920.49690.34530.134*
C120.1485 (4)0.16916 (16)0.4737 (3)0.0612 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0777 (6)0.0746 (6)0.0578 (5)0.0105 (4)0.0170 (4)0.0072 (4)
Cl40.0903 (7)0.0682 (5)0.0546 (5)0.0025 (4)0.0261 (4)0.0098 (4)
Cl30.1127 (9)0.0703 (6)0.0774 (6)0.0146 (5)0.0161 (5)0.0120 (4)
Cl20.1327 (10)0.0557 (5)0.1145 (8)0.0077 (6)0.0265 (7)0.0019 (5)
O40.0964 (19)0.0624 (14)0.0776 (15)0.0033 (13)0.0278 (14)0.0115 (12)
O10.0920 (18)0.0560 (13)0.0748 (15)0.0027 (12)0.0222 (12)0.0056 (11)
C30.0457 (17)0.0590 (18)0.0425 (15)0.0017 (13)0.0020 (12)0.0062 (13)
C40.072 (2)0.0584 (19)0.0548 (18)0.0003 (16)0.0144 (15)0.0074 (15)
O20.107 (2)0.0698 (16)0.0729 (15)0.0033 (14)0.0369 (14)0.0034 (12)
C60.064 (2)0.0565 (18)0.0530 (18)0.0022 (15)0.0044 (15)0.0079 (14)
N10.076 (2)0.0683 (18)0.0538 (15)0.0015 (14)0.0175 (13)0.0034 (13)
C100.0448 (17)0.0594 (18)0.0444 (15)0.0022 (14)0.0035 (12)0.0019 (13)
C110.059 (2)0.064 (2)0.0466 (16)0.0005 (15)0.0042 (14)0.0028 (14)
C130.0565 (19)0.066 (2)0.0509 (17)0.0018 (15)0.0056 (14)0.0038 (14)
O30.136 (3)0.0614 (16)0.0958 (19)0.0204 (15)0.0430 (18)0.0030 (13)
C50.064 (2)0.063 (2)0.0528 (17)0.0050 (16)0.0029 (15)0.0045 (15)
C70.0465 (17)0.0616 (18)0.0418 (15)0.0028 (14)0.0031 (12)0.0062 (13)
C90.058 (2)0.064 (2)0.0501 (17)0.0045 (16)0.0014 (15)0.0015 (15)
C10.133 (4)0.053 (2)0.090 (3)0.003 (2)0.020 (2)0.0003 (18)
N20.0729 (19)0.0568 (16)0.0602 (16)0.0026 (13)0.0062 (13)0.0087 (13)
C140.0462 (17)0.0586 (18)0.0464 (16)0.0040 (13)0.0034 (13)0.0036 (13)
C20.061 (2)0.0597 (18)0.0445 (16)0.0022 (15)0.0002 (14)0.0054 (14)
C80.105 (3)0.068 (2)0.090 (3)0.002 (2)0.016 (2)0.0210 (19)
C120.064 (2)0.0546 (18)0.064 (2)0.0040 (15)0.0002 (16)0.0012 (15)
Geometric parameters (Å, º) top
Cl1—C141.720 (3)N1—C51.306 (4)
Cl4—C71.723 (3)C10—C111.392 (4)
Cl3—C51.731 (3)C10—C141.393 (4)
Cl2—C121.731 (3)C10—C91.479 (4)
O4—C91.313 (4)C11—N21.330 (4)
O4—C81.446 (4)C11—H11A0.9300
O1—C21.329 (4)C13—C121.371 (4)
O1—C11.441 (4)C13—C141.374 (4)
C3—C71.389 (4)C13—H13A0.9300
C3—C41.393 (4)O3—C91.184 (4)
C3—C21.478 (4)C1—H1B0.9600
C4—N11.324 (4)C1—H1C0.9600
C4—H4A0.9300C1—H1D0.9600
O2—C21.194 (4)N2—C121.314 (4)
C6—C71.368 (4)C8—H8A0.9600
C6—C51.376 (4)C8—H8B0.9600
C6—H6A0.9300C8—H8C0.9600
C9—O4—C8116.6 (3)C3—C7—Cl4122.1 (2)
C2—O1—C1116.2 (3)O3—C9—O4122.6 (3)
C7—C3—C4115.7 (3)O3—C9—C10125.7 (3)
C7—C3—C2124.4 (2)O4—C9—C10111.8 (3)
C4—C3—C2119.8 (3)O1—C1—H1B109.5
N1—C4—C3125.6 (3)O1—C1—H1C109.5
N1—C4—H4A117.2H1B—C1—H1C109.5
C3—C4—H4A117.2O1—C1—H1D109.5
C7—C6—C5117.6 (3)H1B—C1—H1D109.5
C7—C6—H6A121.2H1C—C1—H1D109.5
C5—C6—H6A121.2C12—N2—C11115.9 (3)
C5—N1—C4115.7 (3)C13—C14—C10120.2 (3)
C11—C10—C14116.2 (3)C13—C14—Cl1117.2 (2)
C11—C10—C9120.0 (3)C10—C14—Cl1122.5 (2)
C14—C10—C9123.8 (3)O2—C2—O1122.5 (3)
N2—C11—C10124.8 (3)O2—C2—C3126.4 (3)
N2—C11—H11A117.6O1—C2—C3111.2 (3)
C10—C11—H11A117.6O4—C8—H8A109.5
C12—C13—C14117.0 (3)O4—C8—H8B109.5
C12—C13—H13A121.5H8A—C8—H8B109.5
C14—C13—H13A121.5O4—C8—H8C109.5
N1—C5—C6125.4 (3)H8A—C8—H8C109.5
N1—C5—Cl3116.1 (2)H8B—C8—H8C109.5
C6—C5—Cl3118.5 (2)N2—C12—C13125.9 (3)
C6—C7—C3120.0 (3)N2—C12—Cl2115.8 (2)
C6—C7—Cl4117.9 (2)C13—C12—Cl2118.2 (2)
C7—C3—C4—N10.2 (5)C11—C10—C9—O48.7 (4)
C2—C3—C4—N1179.1 (3)C14—C10—C9—O4172.4 (3)
C3—C4—N1—C50.1 (5)C10—C11—N2—C120.3 (5)
C14—C10—C11—N20.9 (4)C12—C13—C14—C101.1 (4)
C9—C10—C11—N2178.0 (3)C12—C13—C14—Cl1178.5 (2)
C4—N1—C5—C60.1 (5)C11—C10—C14—C131.6 (4)
C4—N1—C5—Cl3179.7 (2)C9—C10—C14—C13177.3 (3)
C7—C6—C5—N10.6 (5)C11—C10—C14—Cl1178.0 (2)
C7—C6—C5—Cl3179.8 (2)C9—C10—C14—Cl13.1 (4)
C5—C6—C7—C30.9 (5)C1—O1—C2—O23.5 (5)
C5—C6—C7—Cl4179.3 (2)C1—O1—C2—C3176.6 (3)
C4—C3—C7—C60.7 (4)C7—C3—C2—O211.1 (5)
C2—C3—C7—C6178.5 (3)C4—C3—C2—O2168.0 (3)
C4—C3—C7—Cl4179.5 (2)C7—C3—C2—O1168.8 (3)
C2—C3—C7—Cl41.3 (4)C4—C3—C2—O112.0 (4)
C8—O4—C9—O31.1 (5)C11—N2—C12—C130.9 (5)
C8—O4—C9—C10178.8 (3)C11—N2—C12—Cl2178.8 (2)
C11—C10—C9—O3171.2 (3)C14—C13—C12—N20.2 (5)
C14—C10—C9—O37.7 (5)C14—C13—C12—Cl2179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O3i0.932.413.309 (4)162
C11—H11A···O2ii0.932.603.513 (4)168
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC7H5Cl2NO2
Mr206.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.033 (4), 18.974 (9), 11.240 (6)
β (°) 95.224 (8)
V3)1705.9 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.45 × 0.19 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.739, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
8532, 3012, 2289
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 1.08
No. of reflections3012
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O3i0.932.413.309 (4)162.2
C11—H11A···O2ii0.932.603.513 (4)167.5
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z1.
 

References

First citationBondinell, W. E., Holt, D. A., Lago, M. A., Neeb, M. J. & Semones, M. A. (2002). World Wide Patent. WO 02 076 463.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcArdle, J. V., de Laubenfels, E., Shorter, A. L. & Ammon, H. L. (1982). Polyhedron, 1, 471–474.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWallace, E., Hurley, B., Yang, H. W., Lyssikatos, J. & Blake, J. (2006). United States Patent US 7 144 907.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds