organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Di­benzyl­imidazolidin-2-yl­­idene)malono­nitrile

aHenan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bLight Industry Vocational College, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: fengxiaozhong_2008@yahoo.cn

(Received 6 May 2008; accepted 10 May 2008; online 21 May 2008)

In the title mol­ecule, C20H18N4, the imidazolidine ring makes dihedral angles of 86.74 (2) and 81.18 (3)° with the two phenyl rings. In the absence of classical inter­molecular inter­actions, the crystal packing is stabilized by van der Waals forces.

Related literature

For the crystal structures of related compounds, see: Adhikesavalu & Venkatesan (1982[Adhikesavalu, D. & Venkatesan, K. (1982). Acta Cryst. B38, 855-859.]). For details of the biological activities of imidazolidine-containing compounds, see: Sasho et al., 1994[Sasho, S., Obase, H., Ichikawa, S., Yoshizaki, R., Ishii, A. & Shuto, K. (1994). Bioorg. Med. Chem. Lett. 4, 615-618.]. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4

  • Mr = 314.38

  • Orthorhombic, P c a 21

  • a = 15.445 (3) Å

  • b = 9.753 (2) Å

  • c = 11.411 (2) Å

  • V = 1718.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.994

  • 12952 measured reflections

  • 1607 independent reflections

  • 1291 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.13

  • 1607 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazolidine is an important group in organic chemistry. Many compounds containing imidazolidine groups possess a broad spectrum of biological activities (Sasho et al., 1994). Here, we report the crystal structure of (I).

In (I) (Fig. 1), all bond lengths are normal (Allen et al., 1987) and in a good agreement with those reported previously (Adhikesavalu & Venkatesan., 1982). The imidazolidine ring (C8—C10/N3/N4) makes dihedral angles of 86.74 (2) and 81.18 (3)°, respectively, with two benzene rings (C1—C6; C15—C20). In the absence of classical intermolecular interactions, the crystal packing is stabilized by van der Waals forces.

Related literature top

For the crystal structures of related compounds, see: Adhikesavalu & Venkatesan (1982). For details of the biological activities of Imidazolidine-containing compounds, see: Sasho et al., 1994. For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 2-(imidazolidin-2-ylidene)malononitrile 1.34 g (10 mmol) and sodium hydride 0.3 g dissolved in anhydrous acetonitrile (20 ml), and dropwise added over a period of 10 min to a solution of 1-(chloromethyl)benzene 2.53 (20 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 3 h. The solvent was removed and the residue was purified by flash chromatography (1:1 cyclohexane:dichloromethane) to give I as a white solid (2.67 g, 85%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å, with Uiso(H) = 1.2 times Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
2-(1,3-Dibenzylimidazolidin-2-ylidene)malononitrile top
Crystal data top
C20H18N4F(000) = 664
Mr = 314.38Dx = 1.215 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2422 reflections
a = 15.445 (3) Åθ = 2.3–25.1°
b = 9.753 (2) ŵ = 0.07 mm1
c = 11.411 (2) ÅT = 293 K
V = 1718.9 (6) Å3Needle, colorless
Z = 40.24 × 0.14 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1607 independent reflections
Radiation source: Rotating Anode1291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω oscillation scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1818
Tmin = 0.982, Tmax = 0.994k = 1111
12952 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.3923P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1607 reflectionsΔρmax = 0.17 e Å3
218 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (3)
Crystal data top
C20H18N4V = 1718.9 (6) Å3
Mr = 314.38Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 15.445 (3) ŵ = 0.07 mm1
b = 9.753 (2) ÅT = 293 K
c = 11.411 (2) Å0.24 × 0.14 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1607 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1291 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.994Rint = 0.038
12952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.13Δρmax = 0.17 e Å3
1607 reflectionsΔρmin = 0.15 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.12629 (16)0.3089 (3)0.5140 (3)0.0547 (7)
N30.19406 (17)0.5004 (3)0.5604 (3)0.0552 (7)
C100.19739 (18)0.3857 (3)0.4962 (3)0.0486 (7)
C150.2983 (2)0.6672 (3)0.6431 (3)0.0554 (8)
C110.2649 (2)0.3501 (3)0.4181 (3)0.0563 (8)
C60.0325 (2)0.1189 (4)0.4561 (4)0.0645 (10)
C130.2496 (2)0.2696 (4)0.3185 (4)0.0604 (9)
C80.0718 (2)0.3705 (4)0.6057 (4)0.0651 (10)
H8A0.07260.31570.67660.078*
H8B0.01250.38050.57930.078*
C140.2426 (3)0.6261 (3)0.5409 (3)0.0628 (9)
H14A0.20220.69970.52420.075*
H14B0.27910.61420.47250.075*
C120.3498 (2)0.3964 (5)0.4360 (4)0.0730 (11)
N20.2371 (3)0.2064 (3)0.2348 (3)0.0805 (10)
C70.1204 (2)0.1601 (3)0.5002 (4)0.0633 (9)
H7A0.13130.11610.57510.076*
H7B0.16430.12930.44540.076*
C160.3438 (2)0.5709 (4)0.7070 (3)0.0606 (9)
H16A0.33700.47820.69030.073*
C180.4101 (3)0.7463 (5)0.8220 (4)0.0808 (12)
H18A0.44790.77310.88110.097*
C190.3648 (3)0.8422 (5)0.7607 (4)0.0882 (14)
H19A0.37180.93450.77880.106*
C90.1137 (2)0.5087 (4)0.6255 (4)0.0648 (9)
H9A0.07740.58200.59580.078*
H9B0.12470.52410.70810.078*
C200.3079 (3)0.8040 (4)0.6708 (4)0.0746 (11)
H20A0.27680.87040.63020.089*
C170.3997 (2)0.6111 (5)0.7963 (3)0.0688 (10)
H17A0.43010.54540.83860.083*
C40.0941 (3)0.0245 (5)0.4651 (7)0.109 (2)
H4A0.12430.09590.50020.130*
N10.4199 (2)0.4303 (5)0.4518 (4)0.1066 (15)
C50.0132 (3)0.0158 (4)0.5091 (5)0.0864 (14)
H5A0.00950.02790.57470.104*
C10.0043 (3)0.1819 (5)0.3600 (5)0.0978 (15)
H1A0.02570.25150.32190.117*
C20.0843 (4)0.1437 (6)0.3197 (7)0.124 (2)
H2A0.10850.18920.25610.149*
C30.1278 (4)0.0414 (6)0.3712 (8)0.123 (2)
H3A0.18170.01550.34230.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0400 (13)0.0606 (15)0.0636 (18)0.0039 (12)0.0008 (14)0.0105 (14)
N30.0491 (15)0.0576 (15)0.0590 (16)0.0077 (12)0.0039 (13)0.0092 (15)
C100.0395 (15)0.0585 (17)0.0477 (18)0.0002 (13)0.0019 (15)0.0002 (16)
C150.0533 (18)0.0564 (18)0.056 (2)0.0081 (15)0.0014 (17)0.0045 (17)
C110.0457 (18)0.069 (2)0.054 (2)0.0041 (15)0.0006 (16)0.0024 (18)
C60.059 (2)0.0561 (19)0.078 (3)0.0091 (17)0.005 (2)0.0164 (19)
C130.0567 (19)0.067 (2)0.057 (2)0.0062 (17)0.0012 (18)0.001 (2)
C80.0442 (18)0.083 (2)0.068 (2)0.0025 (17)0.0070 (17)0.014 (2)
C140.065 (2)0.0590 (18)0.065 (2)0.0084 (18)0.0123 (18)0.0010 (19)
C120.055 (2)0.100 (3)0.064 (2)0.010 (2)0.0075 (19)0.012 (2)
N20.093 (3)0.082 (2)0.067 (2)0.008 (2)0.006 (2)0.011 (2)
C70.0579 (19)0.0544 (18)0.078 (2)0.0037 (15)0.001 (2)0.006 (2)
C160.056 (2)0.069 (2)0.056 (2)0.0103 (18)0.0020 (17)0.0012 (19)
C180.065 (2)0.113 (3)0.065 (2)0.026 (2)0.000 (2)0.017 (3)
C190.090 (3)0.083 (3)0.092 (3)0.030 (3)0.012 (3)0.032 (3)
C90.057 (2)0.075 (2)0.063 (2)0.0002 (18)0.0069 (19)0.0148 (19)
C200.079 (3)0.060 (2)0.084 (3)0.0100 (19)0.003 (2)0.012 (2)
C170.0524 (19)0.100 (3)0.053 (2)0.0134 (19)0.0046 (17)0.002 (2)
C40.075 (3)0.074 (3)0.177 (6)0.023 (2)0.016 (4)0.025 (4)
N10.054 (2)0.153 (4)0.113 (3)0.020 (2)0.015 (2)0.039 (3)
C50.076 (3)0.068 (2)0.115 (4)0.015 (2)0.016 (3)0.011 (3)
C10.096 (3)0.094 (3)0.103 (4)0.023 (3)0.034 (3)0.004 (3)
C20.109 (4)0.110 (4)0.153 (6)0.019 (3)0.066 (4)0.014 (4)
C30.086 (4)0.089 (4)0.194 (7)0.012 (3)0.029 (4)0.039 (4)
Geometric parameters (Å, º) top
N4—C101.345 (4)C7—H7A0.9700
N4—C71.463 (4)C7—H7B0.9700
N4—C81.470 (4)C16—C171.392 (5)
N3—C101.339 (4)C16—H16A0.9300
N3—C91.448 (4)C18—C171.360 (6)
N3—C141.453 (4)C18—C191.361 (7)
C10—C111.415 (5)C18—H18A0.9300
C15—C201.379 (5)C19—C201.401 (6)
C15—C161.381 (5)C19—H19A0.9300
C15—C141.504 (5)C9—H9A0.9700
C11—C121.402 (5)C9—H9B0.9700
C11—C131.402 (5)C20—H20A0.9300
C6—C51.370 (5)C17—H17A0.9300
C6—C11.380 (6)C4—C31.354 (9)
C6—C71.503 (5)C4—C51.402 (7)
C13—N21.153 (5)C4—H4A0.9300
C8—C91.512 (5)C5—H5A0.9300
C8—H8A0.9700C1—C21.368 (6)
C8—H8B0.9700C1—H1A0.9300
C14—H14A0.9700C2—C31.339 (9)
C14—H14B0.9700C2—H2A0.9300
C12—N11.146 (5)C3—H3A0.9300
C10—N4—C7125.9 (3)H7A—C7—H7B108.0
C10—N4—C8110.3 (3)C15—C16—C17120.6 (4)
C7—N4—C8116.5 (3)C15—C16—H16A119.7
C10—N3—C9111.1 (3)C17—C16—H16A119.7
C10—N3—C14127.0 (3)C17—C18—C19119.7 (4)
C9—N3—C14118.3 (3)C17—C18—H18A120.1
N3—C10—N4110.6 (3)C19—C18—H18A120.1
N3—C10—C11125.3 (3)C18—C19—C20121.0 (4)
N4—C10—C11124.1 (3)C18—C19—H19A119.5
C20—C15—C16118.9 (4)C20—C19—H19A119.5
C20—C15—C14119.8 (4)N3—C9—C8103.9 (3)
C16—C15—C14121.3 (3)N3—C9—H9A111.0
C12—C11—C13117.2 (3)C8—C9—H9A111.0
C12—C11—C10121.3 (3)N3—C9—H9B111.0
C13—C11—C10121.6 (3)C8—C9—H9B111.0
C5—C6—C1117.7 (4)H9A—C9—H9B109.0
C5—C6—C7120.9 (4)C15—C20—C19119.5 (4)
C1—C6—C7121.3 (4)C15—C20—H20A120.3
N2—C13—C11178.3 (4)C19—C20—H20A120.3
N4—C8—C9103.0 (3)C18—C17—C16120.3 (4)
N4—C8—H8A111.2C18—C17—H17A119.9
C9—C8—H8A111.2C16—C17—H17A119.9
N4—C8—H8B111.2C3—C4—C5119.6 (5)
C9—C8—H8B111.2C3—C4—H4A120.2
H8A—C8—H8B109.1C5—C4—H4A120.2
N3—C14—C15113.7 (3)C6—C5—C4120.4 (5)
N3—C14—H14A108.8C6—C5—H5A119.8
C15—C14—H14A108.8C4—C5—H5A119.8
N3—C14—H14B108.8C2—C1—C6121.2 (5)
C15—C14—H14B108.8C2—C1—H1A119.4
H14A—C14—H14B107.7C6—C1—H1A119.4
N1—C12—C11177.9 (6)C3—C2—C1120.6 (7)
N4—C7—C6110.9 (3)C3—C2—H2A119.7
N4—C7—H7A109.5C1—C2—H2A119.7
C6—C7—H7A109.5C2—C3—C4120.5 (6)
N4—C7—H7B109.5C2—C3—H3A119.8
C6—C7—H7B109.5C4—C3—H3A119.8
C9—N3—C10—N42.2 (4)C1—C6—C7—N449.6 (5)
C14—N3—C10—N4159.9 (3)C20—C15—C16—C171.3 (5)
C9—N3—C10—C11176.5 (3)C14—C15—C16—C17175.6 (3)
C14—N3—C10—C1118.8 (5)C17—C18—C19—C200.4 (7)
C7—N4—C10—N3153.8 (3)C10—N3—C9—C87.8 (4)
C8—N4—C10—N34.8 (4)C14—N3—C9—C8167.7 (3)
C7—N4—C10—C1127.5 (5)N4—C8—C9—N39.8 (4)
C8—N4—C10—C11176.5 (3)C16—C15—C20—C191.5 (6)
N3—C10—C11—C1228.6 (5)C14—C15—C20—C19175.4 (4)
N4—C10—C11—C12152.9 (4)C18—C19—C20—C150.7 (7)
N3—C10—C11—C13150.1 (3)C19—C18—C17—C160.7 (6)
N4—C10—C11—C1328.4 (5)C15—C16—C17—C180.2 (6)
C10—N4—C8—C99.3 (4)C1—C6—C5—C40.9 (6)
C7—N4—C8—C9161.4 (3)C7—C6—C5—C4178.2 (4)
C10—N3—C14—C15121.6 (4)C3—C4—C5—C61.5 (7)
C9—N3—C14—C1582.0 (4)C5—C6—C1—C20.7 (7)
C20—C15—C14—N3143.2 (3)C7—C6—C1—C2179.7 (5)
C16—C15—C14—N339.9 (5)C6—C1—C2—C31.7 (9)
C10—N4—C7—C6145.9 (3)C1—C2—C3—C41.0 (10)
C8—N4—C7—C666.8 (4)C5—C4—C3—C20.5 (9)
C5—C6—C7—N4131.3 (4)

Experimental details

Crystal data
Chemical formulaC20H18N4
Mr314.38
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)15.445 (3), 9.753 (2), 11.411 (2)
V3)1718.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.982, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
12952, 1607, 1291
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.13
No. of reflections1607
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

 

References

First citationAdhikesavalu, D. & Venkatesan, K. (1982). Acta Cryst. B38, 855–859.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasho, S., Obase, H., Ichikawa, S., Yoshizaki, R., Ishii, A. & Shuto, K. (1994). Bioorg. Med. Chem. Lett. 4, 615–618.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds