metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m806-m807
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: {μ-6,6′-Dieth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}trinitratoholmium(III)nickel(II)

aCollege of Life Sciences, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China, bCollege of Chemistry & Chemical Engineering, Southwest University, 400715 Beibei, Chongqing, People's Republic of China, and cJiangXi Province Key Laboratory of Coordination Chemistry, College of Chemistry & Chemical Engineering, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China
*Correspondence e-mail: ysui@163.com

(Received 6 May 2008; accepted 8 May 2008; online 14 May 2008)

In the title heteronuclear NiII–HoIII complex (systematic name: {μ-6,6′-dieth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N,O1′}trinitrato-1κ6O,O′-holmium(III)nickel(II)), [HoNi(C20H22N2O4)(NO3)3], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-ethoxy­salicyl­idene)ethyl­enediamine (H2L), the Ho and Ni atoms are doubly bridged by two phenolate O atoms of the Schiff base ligand. The coordination of Ni is square-planar with the donor centers of two imine N atoms and two phenolate O atoms. The holmium(III) center has a tenfold ­coordination environment of O atoms, involving the phenolate O atoms, two eth­oxy O atoms and two O atoms each from the three nitrates. Weak C—H⋯O and O⋯Ni [3.383 (4) Å] inter­actions generate a two-dimensional zigzag sheet.

Related literature

For related literature, see: Baggio et al. (2000[Baggio, R., Garland, M. T., Moreno, Y., Pena, O., Perec, M. & Spodine, E. (2000). J. Chem. Soc. Dalton Trans. pp. 2061-2066.]); Caravan et al. (1999[Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. (1999). Chem. Rev. 99, 2293-2352.]); Edder et al. (2000[Edder, C., Piguet, C., Bernardinelli, G., Mareda, J., Bochet, C. G., Bunzli, J.-C. G. & Hopfgartner, G. (2000). Inorg. Chem. 39, 5059-5073.]); Knoer et al. (2005[Knoer, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524-3536.]); Sui et al. (2006[Sui, Y., Fang, X.-N., Xiao, Y.-A., Luo, Q.-Y. & Li, M.-H. (2006). Acta Cryst. E62, m2230-m2232.]).

[Scheme 1]

Experimental

Crystal data
  • [HoNi(C20H22N2O4)(NO3)3]

  • Mr = 764.07

  • Orthorhombic, P 21 21 21

  • a = 8.5825 (8) Å

  • b = 13.7028 (14) Å

  • c = 21.203 (2) Å

  • V = 2493.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.98 mm−1

  • T = 293 (2) K

  • 0.17 × 0.16 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.559, Tmax = 0.625

  • 18705 measured reflections

  • 5970 independent reflections

  • 4299 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.04

  • 5970 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 2.00 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2455 Friedel pairs

  • Flack parameter: −0.003 (18)

Table 1
Selected bond lengths (Å)

Ho1—O1 2.390 (4)
Ho1—O2 2.343 (4)
Ho1—O3 2.540 (4)
Ho1—O4 2.594 (4)
Ho1—O5 2.430 (5)
Ho1—O6 2.468 (5)
Ho1—O8 2.460 (5)
Ho1—O9 2.492 (5)
Ho1—O11 2.531 (5)
Ho1—O12 2.425 (5)
Ni1—O1 1.846 (4)
Ni1—O2 1.847 (4)
Ni1—N1 1.837 (5)
Ni1—N2 1.837 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O10i 0.93 2.37 3.286 (8) 169
C10—H10A⋯O10ii 0.97 2.42 3.301 (9) 150
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes(Sui et al. 2006), we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new NiII—HoIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene) ethylenediamine(H2L).

Complex (I) crystallizes in the space group P212121, with nickel and holmium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by nickel(II), while holmium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Ni1/O1/O2 and Ho1/O1/O2 is 6.97 (26)° suggesting that the bridging moiety is almost planar; the deviation of atoms from the least squares Ni1/O1/O2/Ho1 plane being -0.0583 (2)Å for Ni, -0.0397 (3)Å for Ho, 0.0483 (2)Å for O1 and 0.0497 (2)Å for O2.

The holmium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms from each of the three nitrates chelate to holmium to complete the decacoordination. The three kinds of Ho—O bond distances are significantly different, the shortest being the Ho—O(phenolate) and longest being the Ho—O(ethoxy) separations.

The coordination of nickel(II) is approximately square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0698 (2) Å, while Ni1 is 0.0022 (2)Å above this square plane.

Adjacent molecules are held together by weak interactions (O13···Ni1=3.383 (4) Å, C10—H10A···O10i=3.301 (9), and C12—H12···O10ii=3.286 (8); symmetry codes:(i)x - 1, y, z; (ii)-x, 1/2 + y, 1/2 - z.) these link the molecules into a two-dimensional zigzag sheet(Fig 2).

Related literature top

For related literature, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005); Sui et al. (2006).

Experimental top

H2L was prepared by the 2:1 condensation of 3-ethoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of nickel(II) acetate tetrahydrate (0.217 g, 1 mmol) with H2L(0.356 g, 1 mmol) in methanol solution (80 ml) under reflux for 3 h and then for another 3 h after the addition of holmium(III) nitrate hexahydrate (0.459 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C20H22HoN5NiO13: C 31.44, H 2.90, Ho 21.59, N 9.17, Ni 7.68%; found: C 31.85, H 2.95, Ho 21.55, N 9.24, Ni 7.78. IR(KBr, cm-1): 1645(C=N), 1385,1491(nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.97 (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.
{µ-6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ4O1,O1',O6,O6': 2κ4O1,N,N',O1''}trinitrato-1κ6O,O'-holmium(III) nickel(II)) top
Crystal data top
[HoNi(C20H22N2O4)(NO3)3]F(000) = 1504
Mr = 764.07Dx = 2.035 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6504 reflections
a = 8.5825 (8) Åθ = 1.9–28.3°
b = 13.7028 (14) ŵ = 3.98 mm1
c = 21.203 (2) ÅT = 293 K
V = 2493.6 (4) Å3Block, red
Z = 40.17 × 0.16 × 0.13 mm
Data collection top
Bruker APEXII area-detector
diffractometer
5970 independent reflections
Radiation source: fine-focus sealed tube4299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.559, Tmax = 0.626k = 1718
18705 measured reflectionsl = 2727
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.001
S = 1.04Δρmax = 2.00 e Å3
5970 reflectionsΔρmin = 0.61 e Å3
364 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0058 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2455 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.003 (18)
Crystal data top
[HoNi(C20H22N2O4)(NO3)3]V = 2493.6 (4) Å3
Mr = 764.07Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5825 (8) ŵ = 3.98 mm1
b = 13.7028 (14) ÅT = 293 K
c = 21.203 (2) Å0.17 × 0.16 × 0.13 mm
Data collection top
Bruker APEXII area-detector
diffractometer
5970 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4299 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.626Rint = 0.055
18705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113Δρmax = 2.00 e Å3
S = 1.04Δρmin = 0.61 e Å3
5970 reflectionsAbsolute structure: Flack (1983), 2455 Friedel pairs
364 parametersAbsolute structure parameter: 0.003 (18)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.1509 (7)0.3317 (5)0.3044 (3)0.0427 (15)
Ho10.25263 (3)0.49982 (2)0.400886 (12)0.04143 (11)
Ni10.06665 (9)0.56000 (6)0.31450 (4)0.03838 (19)
O20.0323 (4)0.4496 (3)0.34434 (19)0.0399 (10)
O10.0808 (5)0.6237 (3)0.36270 (19)0.0411 (10)
N10.1998 (6)0.4934 (4)0.2621 (2)0.0434 (12)
N20.1729 (6)0.6703 (4)0.2905 (3)0.0423 (13)
N30.1352 (8)0.5100 (5)0.5279 (3)0.0588 (16)
O60.0496 (6)0.5277 (4)0.4813 (2)0.0647 (14)
C120.1460 (7)0.7577 (5)0.3087 (3)0.0470 (16)
H120.21260.80650.29450.056*
O30.1551 (5)0.3283 (3)0.4234 (2)0.0422 (10)
C180.0875 (7)0.7189 (4)0.3736 (3)0.0386 (13)
O40.3135 (5)0.6799 (3)0.4295 (2)0.0473 (11)
O50.2787 (6)0.4948 (4)0.5150 (2)0.0609 (13)
C150.1149 (8)0.9161 (5)0.4034 (4)0.0556 (18)
H150.12220.98160.41470.067*
C40.0255 (7)0.3594 (4)0.3442 (3)0.0387 (14)
O70.0834 (8)0.5055 (4)0.5815 (3)0.0841 (17)
C190.4500 (8)0.7097 (5)0.4648 (3)0.0533 (17)
H19A0.49170.65380.48720.064*
H19B0.42030.75830.49570.064*
C10.3381 (9)0.1918 (6)0.4400 (4)0.059 (2)
H1A0.28480.15440.40840.089*
H1B0.37930.14870.47160.089*
H1C0.42190.22750.42080.089*
C170.2135 (7)0.7529 (4)0.4098 (3)0.0422 (15)
C130.0195 (8)0.7860 (4)0.3498 (3)0.0434 (15)
C140.0046 (9)0.8868 (5)0.3667 (3)0.0515 (17)
H140.07730.93200.35240.062*
C20.2241 (8)0.2632 (5)0.4706 (3)0.0487 (16)
H2A0.14210.22700.49170.058*
H2B0.27840.30170.50210.058*
O90.3184 (6)0.5422 (4)0.2897 (2)0.0581 (13)
N40.3530 (6)0.4577 (5)0.2744 (3)0.0517 (16)
O80.3482 (6)0.3918 (3)0.3167 (3)0.0573 (12)
C90.2254 (8)0.3989 (5)0.2623 (3)0.0447 (15)
H90.29640.37410.23330.054*
O120.5289 (6)0.5328 (4)0.3902 (3)0.0593 (13)
N50.5831 (8)0.4621 (5)0.4212 (3)0.0605 (16)
C160.2267 (9)0.8516 (5)0.4248 (3)0.0510 (17)
H160.30990.87380.44890.061*
C60.2073 (8)0.2359 (5)0.3070 (3)0.0506 (17)
H60.28630.21620.27980.061*
C30.0358 (7)0.2907 (5)0.3862 (3)0.0417 (14)
C110.3100 (8)0.6507 (5)0.2514 (3)0.0516 (17)
H11A0.32720.70360.22180.062*
H11B0.40220.64340.27740.062*
C100.2754 (8)0.5578 (5)0.2171 (3)0.0513 (16)
H10A0.37100.52850.20160.062*
H10B0.20730.57020.18150.062*
O110.4839 (6)0.4045 (4)0.4421 (3)0.0728 (17)
C200.5726 (10)0.7506 (6)0.4231 (4)0.071 (2)
H20A0.60090.70310.39190.106*
H20B0.66240.76720.44780.106*
H20C0.53360.80810.40260.106*
C80.0229 (7)0.1970 (5)0.3887 (4)0.0484 (16)
H80.01920.15140.41640.058*
O100.3939 (7)0.4348 (5)0.2204 (2)0.0808 (18)
O130.7234 (6)0.4536 (7)0.4307 (3)0.099 (2)
C70.1465 (9)0.1717 (5)0.3492 (3)0.0563 (19)
H70.18840.10920.35180.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.040 (3)0.041 (3)0.048 (4)0.006 (3)0.003 (3)0.002 (3)
Ho10.04247 (16)0.03543 (16)0.04639 (17)0.00007 (18)0.00389 (12)0.00217 (13)
Ni10.0375 (4)0.0340 (4)0.0436 (4)0.0005 (3)0.0050 (4)0.0047 (4)
O20.038 (2)0.033 (2)0.049 (2)0.0065 (18)0.0099 (18)0.004 (2)
O10.045 (2)0.026 (2)0.052 (2)0.0024 (19)0.014 (2)0.004 (2)
N10.037 (2)0.051 (3)0.043 (3)0.005 (3)0.002 (2)0.002 (3)
N20.040 (3)0.038 (3)0.049 (3)0.001 (2)0.001 (2)0.010 (3)
N30.085 (5)0.037 (3)0.054 (3)0.003 (3)0.007 (3)0.005 (3)
O60.066 (3)0.076 (4)0.052 (3)0.003 (3)0.001 (3)0.001 (3)
C120.041 (3)0.046 (4)0.054 (4)0.011 (3)0.009 (3)0.018 (4)
O30.045 (2)0.027 (2)0.054 (3)0.0026 (19)0.004 (2)0.008 (2)
C180.039 (3)0.034 (3)0.043 (3)0.002 (3)0.000 (3)0.006 (3)
O40.049 (2)0.037 (2)0.056 (3)0.004 (2)0.016 (2)0.000 (2)
O50.070 (3)0.061 (3)0.051 (3)0.005 (3)0.008 (2)0.002 (3)
C150.063 (4)0.034 (4)0.069 (5)0.007 (3)0.008 (4)0.003 (4)
C40.041 (3)0.036 (3)0.039 (3)0.004 (3)0.001 (3)0.001 (3)
O70.120 (5)0.077 (4)0.055 (3)0.004 (4)0.013 (4)0.003 (3)
C190.048 (4)0.052 (4)0.060 (4)0.002 (3)0.010 (4)0.006 (3)
C10.057 (4)0.044 (4)0.077 (5)0.010 (3)0.016 (4)0.002 (4)
C170.053 (4)0.031 (3)0.043 (3)0.004 (3)0.010 (3)0.003 (3)
C130.052 (4)0.032 (3)0.046 (3)0.001 (3)0.005 (3)0.004 (3)
C140.061 (4)0.032 (3)0.062 (4)0.011 (3)0.001 (3)0.008 (3)
C20.061 (4)0.042 (4)0.043 (3)0.002 (3)0.010 (3)0.008 (3)
O90.069 (3)0.051 (3)0.055 (3)0.002 (3)0.004 (3)0.012 (3)
N40.043 (3)0.063 (4)0.049 (3)0.018 (3)0.006 (3)0.003 (3)
O80.064 (3)0.051 (3)0.056 (3)0.007 (2)0.001 (3)0.009 (3)
C90.047 (4)0.041 (3)0.046 (3)0.006 (3)0.003 (3)0.000 (3)
O120.053 (3)0.052 (3)0.073 (3)0.000 (2)0.000 (3)0.005 (3)
N50.055 (4)0.068 (4)0.059 (3)0.002 (3)0.002 (3)0.000 (3)
C160.054 (4)0.047 (4)0.053 (3)0.011 (3)0.005 (3)0.001 (3)
C60.047 (4)0.041 (4)0.064 (4)0.006 (3)0.002 (4)0.007 (4)
C30.042 (3)0.034 (3)0.049 (3)0.001 (3)0.001 (3)0.001 (3)
C110.046 (4)0.056 (5)0.053 (4)0.005 (3)0.008 (3)0.011 (4)
C100.049 (4)0.051 (4)0.054 (3)0.007 (3)0.019 (3)0.004 (3)
O110.054 (3)0.081 (4)0.083 (4)0.005 (3)0.003 (3)0.029 (3)
C200.066 (5)0.058 (5)0.087 (5)0.016 (5)0.006 (5)0.012 (5)
C80.047 (4)0.034 (4)0.064 (4)0.001 (3)0.005 (3)0.008 (3)
O100.080 (4)0.115 (5)0.048 (3)0.034 (4)0.013 (3)0.018 (4)
O130.044 (3)0.138 (6)0.114 (5)0.010 (4)0.012 (3)0.022 (5)
C70.063 (4)0.034 (4)0.072 (5)0.013 (3)0.000 (4)0.002 (4)
Geometric parameters (Å, º) top
Ho1—O12.390 (4)C15—H150.9300
Ho1—O22.343 (4)C4—C31.398 (9)
Ho1—O32.540 (4)C19—C201.484 (10)
Ho1—O42.594 (4)C19—H19A0.9700
Ho1—O52.430 (5)C19—H19B0.9700
Ho1—O62.468 (5)C1—C21.529 (10)
Ho1—O82.460 (5)C1—H1A0.9600
Ho1—O92.492 (5)C1—H1B0.9600
Ho1—O112.531 (5)C1—H1C0.9600
Ho1—O122.425 (5)C17—C161.394 (9)
Ni1—O11.846 (4)C13—C141.433 (9)
Ni1—O21.847 (4)C14—H140.9300
Ni1—N11.837 (5)C2—H2A0.9700
Ni1—N21.837 (5)C2—H2B0.9700
C5—C61.400 (9)O9—N41.239 (8)
C5—C41.419 (8)N4—O101.238 (7)
C5—C91.433 (9)N4—O81.272 (8)
O2—C41.332 (7)C9—H90.9300
O1—C181.327 (7)O12—N51.259 (8)
N1—C91.313 (8)N5—O131.227 (8)
N1—C101.453 (8)N5—O111.242 (8)
N2—C121.280 (8)C16—H160.9300
N2—C111.465 (9)C6—C71.359 (10)
N3—O71.221 (7)C6—H60.9300
N3—O61.255 (8)C3—C81.380 (9)
N3—O51.279 (8)C11—C101.496 (10)
C12—C131.445 (9)C11—H11A0.9700
C12—H120.9300C11—H11B0.9700
O3—C31.392 (7)C10—H10A0.9700
O3—C21.466 (7)C10—H10B0.9700
C18—C131.393 (8)C20—H20A0.9600
C18—C171.406 (9)C20—H20B0.9600
O4—C171.383 (7)C20—H20C0.9600
O4—C191.449 (8)C8—C71.396 (10)
C15—C141.348 (10)C8—H80.9300
C15—C161.382 (10)C7—H70.9300
C6—C5—C4119.3 (6)C19—O4—Ho1123.5 (4)
C6—C5—C9118.2 (6)N3—O5—Ho196.9 (4)
C4—C5—C9122.4 (6)C14—C15—C16121.8 (6)
O2—Ho1—O162.44 (14)C14—C15—H15119.1
O2—Ho1—O12142.78 (15)C16—C15—H15119.1
O1—Ho1—O12116.07 (17)O2—C4—C3118.9 (5)
O2—Ho1—O5125.12 (15)O2—C4—C5122.1 (6)
O1—Ho1—O5114.48 (17)C3—C4—C5118.9 (5)
O12—Ho1—O590.49 (18)O4—C19—C20111.9 (6)
O2—Ho1—O873.78 (15)O4—C19—H19A109.2
O1—Ho1—O8112.76 (15)C20—C19—H19A109.2
O12—Ho1—O873.62 (17)O4—C19—H19B109.2
O5—Ho1—O8132.44 (19)C20—C19—H19B109.2
O2—Ho1—O680.15 (16)H19A—C19—H19B107.9
O1—Ho1—O671.83 (16)C2—C1—H1A109.5
O12—Ho1—O6136.61 (17)C2—C1—H1B109.5
O5—Ho1—O651.82 (17)H1A—C1—H1B109.5
O8—Ho1—O6146.11 (17)C2—C1—H1C109.5
O2—Ho1—O976.56 (16)H1A—C1—H1C109.5
O1—Ho1—O969.75 (16)H1B—C1—H1C109.5
O12—Ho1—O969.29 (18)O4—C17—C16125.6 (6)
O5—Ho1—O9157.98 (18)O4—C17—C18113.8 (5)
O8—Ho1—O951.54 (17)C16—C17—C18120.6 (6)
O6—Ho1—O9141.01 (17)C18—C13—C14119.1 (6)
O2—Ho1—O11131.15 (18)C18—C13—C12122.4 (6)
O1—Ho1—O11165.27 (17)C14—C13—C12118.5 (6)
O12—Ho1—O1150.32 (17)C15—C14—C13119.9 (6)
O5—Ho1—O1164.50 (19)C15—C14—H14120.0
O8—Ho1—O1171.28 (19)C13—C14—H14120.0
O6—Ho1—O11113.28 (17)O3—C2—C1111.0 (5)
O9—Ho1—O11105.60 (18)O3—C2—H2A109.4
O2—Ho1—O363.79 (14)C1—C2—H2A109.4
O1—Ho1—O3121.17 (14)O3—C2—H2B109.4
O12—Ho1—O3120.80 (16)C1—C2—H2B109.4
O5—Ho1—O379.44 (17)H2A—C2—H2B108.0
O8—Ho1—O371.93 (16)N4—O9—Ho194.8 (4)
O6—Ho1—O377.33 (17)O10—N4—O9123.1 (7)
O9—Ho1—O3117.91 (17)O10—N4—O8118.8 (7)
O11—Ho1—O373.51 (16)O9—N4—O8118.1 (6)
O2—Ho1—O4124.19 (15)N4—O8—Ho195.5 (4)
O1—Ho1—O461.83 (14)N1—C9—C5124.2 (6)
O12—Ho1—O469.37 (16)N1—C9—H9117.9
O5—Ho1—O477.05 (16)C5—C9—H9117.9
O8—Ho1—O4132.43 (16)N5—O12—Ho199.7 (4)
O6—Ho1—O480.41 (17)O13—N5—O11123.6 (8)
O9—Ho1—O487.35 (17)O13—N5—O12121.4 (7)
O11—Ho1—O4104.59 (17)O11—N5—O12114.9 (6)
O3—Ho1—O4154.49 (18)C15—C16—C17119.3 (7)
N1—Ni1—N286.1 (3)C15—C16—H16120.3
N1—Ni1—O1175.1 (2)C17—C16—H16120.3
N2—Ni1—O196.0 (2)C7—C6—C5120.0 (6)
N1—Ni1—O294.9 (2)C7—C6—H6120.0
N2—Ni1—O2175.7 (2)C5—C6—H6120.0
O1—Ni1—O283.27 (17)C8—C3—O3126.2 (6)
C4—O2—Ni1126.1 (4)C8—C3—C4120.9 (6)
C4—O2—Ho1125.1 (4)O3—C3—C4112.9 (5)
Ni1—O2—Ho1107.79 (18)N2—C11—C10105.8 (5)
C18—O1—Ni1126.2 (4)N2—C11—H11A110.6
C18—O1—Ho1127.8 (4)C10—C11—H11A110.6
Ni1—O1—Ho1105.95 (17)N2—C11—H11B110.6
C9—N1—C10121.8 (5)C10—C11—H11B110.6
C9—N1—Ni1126.3 (5)H11A—C11—H11B108.7
C10—N1—Ni1111.9 (4)N1—C10—C11106.7 (5)
C12—N2—C11119.2 (6)N1—C10—H10A110.4
C12—N2—Ni1126.7 (5)C11—C10—H10A110.4
C11—N2—Ni1113.9 (4)N1—C10—H10B110.4
O7—N3—O6122.0 (7)C11—C10—H10B110.4
O7—N3—O5122.8 (7)H10A—C10—H10B108.6
O6—N3—O5115.3 (6)N5—O11—Ho195.0 (4)
N3—O6—Ho195.8 (4)C19—C20—H20A109.5
N2—C12—C13124.7 (6)C19—C20—H20B109.5
N2—C12—H12117.7H20A—C20—H20B109.5
C13—C12—H12117.7C19—C20—H20C109.5
C3—O3—C2117.3 (5)H20A—C20—H20C109.5
C3—O3—Ho1118.6 (3)H20B—C20—H20C109.5
C2—O3—Ho1124.0 (4)C3—C8—C7119.0 (6)
O1—C18—C13123.9 (6)C3—C8—H8120.5
O1—C18—C17117.0 (5)C7—C8—H8120.5
C13—C18—C17119.1 (6)C6—C7—C8121.7 (6)
C17—O4—C19117.0 (5)C6—C7—H7119.1
C17—O4—Ho1119.5 (4)C8—C7—H7119.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O120.962.413.088 (9)127
C12—H12···O10i0.932.373.286 (8)169
C10—H10A···O10ii0.972.423.301 (9)150
C2—H2B···O110.972.593.015 (9)107
C1—H1C···O110.962.523.173 (10)125
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[HoNi(C20H22N2O4)(NO3)3]
Mr764.07
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.5825 (8), 13.7028 (14), 21.203 (2)
V3)2493.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.98
Crystal size (mm)0.17 × 0.16 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.559, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
18705, 5970, 4299
Rint0.055
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.04
No. of reflections5970
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.00, 0.61
Absolute structureFlack (1983), 2455 Friedel pairs
Absolute structure parameter0.003 (18)

Computer programs: , SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), APEX2 (Bruker, 2004) and publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Ho1—O12.390 (4)Ho1—O92.492 (5)
Ho1—O22.343 (4)Ho1—O112.531 (5)
Ho1—O32.540 (4)Ho1—O122.425 (5)
Ho1—O42.594 (4)Ni1—O11.846 (4)
Ho1—O52.430 (5)Ni1—O21.847 (4)
Ho1—O62.468 (5)Ni1—N11.837 (5)
Ho1—O82.460 (5)Ni1—N21.837 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10i0.932.373.286 (8)168.7
C10—H10A···O10ii0.972.423.301 (9)150.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the Department of Education, JiangXi Province (No. 2007317) and the Natural Science Foundation of JiangXi Province (No. 2007GZH1667).

References

First citationBaggio, R., Garland, M. T., Moreno, Y., Pena, O., Perec, M. & Spodine, E. (2000). J. Chem. Soc. Dalton Trans. pp. 2061–2066.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. (1999). Chem. Rev. 99, 2293–2352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdder, C., Piguet, C., Bernardinelli, G., Mareda, J., Bochet, C. G., Bunzli, J.-C. G. & Hopfgartner, G. (2000). Inorg. Chem. 39, 5059–5073.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKnoer, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524–3536.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Y., Fang, X.-N., Xiao, Y.-A., Luo, Q.-Y. & Li, M.-H. (2006). Acta Cryst. E62, m2230–m2232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m806-m807
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds