organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1070-o1071

Methyl 3-(2-chloro­phenyl)-2-(1H-indol-3-ylmethyl)-5-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-4-nitropyr­rolidine-2-carboxylate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 1 May 2008; accepted 7 May 2008; online 14 May 2008)

In the mol­ecule of the title compound, C37H33ClN4O6, the four-membered β-lactam ring is essentially planar and is oriented at dihedral angles of 30.0 (1), 76.3 (1) and 30.9 (1)° with respect to the methoxy­phenyl ring, the phenyl ring and the indole unit, respectively. The pyrrolidine ring adopts a twist conformation. Intra­molecular C—H⋯Cl and C—H⋯O hydrogen bonds result in the formation of two five- and one six-membered rings. In the crystal structure, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules. A weak ππ inter­action between the pyrrole rings further stabilizes the structure, with a centroid–centroid distance of 3.806 (2) Å.

Related literature

For general background, see: Bruggink (2001[Bruggink, A. (2001). Synthesis of β-Lactam Antibiotics, Chemistry, Biocatalysis and Process Integration, edited by A. Bruggink. Dordrecht: Kluwer.]); Morin & Gorman (1982[Morin, M. B. & Gorman, M. (1982). Chemistry and Biology of β-Lactam Antibiotics, edited by M. B. Morin & M. Gorman, pp. 1- 3. New York: Academic Press.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, Vol. 1b, chs. 1.18-1.20. New York: Elsevier.]); Georg (1993[Georg, G. I. (1993). The Organic Chemistry of β-Lactams, edited by G. I. Georg. New York: VCH.]); Coyne et al. (2007[Coyne, A. G., Muller-Bunz, H. & Guiry, P. J. (2007). Tetrahedron Asymmetry, 18, 199-207.]); Dobrowolski et al. (2004[Dobrowolski, J. C., Sadlej, J. & Mazurek, A. P. (2004). J. Mol. Struct. THEOCHEM, 684, 181-186.]); Cha et al. (2006[Cha, J. M., Yang, S. & Carlson, K. H. (2006). J. Chromatogr. A, 1115, 46-57. ]). For related literature, see: Bhaskaran et al. (2006[Bhaskaran, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci. 22, x57-x58.]); Kamala et al. (2008[Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716-o717.]); Ülkü et al. (1997[Ülkü, D., Ercan, F. & Güner, V. (1997). Acta Cryst. C53, 1945-1947.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C37H33ClN4O6

  • Mr = 665.12

  • Triclinic, [P \overline 1]

  • a = 10.399 (3) Å

  • b = 12.500 (3) Å

  • c = 14.211 (3) Å

  • α = 93.766 (6)°

  • β = 99.962 (6)°

  • γ = 114.066 (5)°

  • V = 1642.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEX2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.951, Tmax = 0.973

  • 25481 measured reflections

  • 5563 independent reflections

  • 3770 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.317

  • S = 1.10

  • 5563 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl1 0.98 2.57 3.095 (4) 114
C11—H11⋯O3 0.98 2.37 2.786 (4) 105
C22—H22⋯O5 0.93 2.59 3.080 (6) 113
C14—H14⋯O4i 0.98 2.53 3.443 (5) 154
C34—H34⋯O4ii 0.93 2.59 3.414 (6) 148
N1—H1A⋯O6iii 0.86 2.14 2.982 (5) 167
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

β-Lactams are one of the best known and most extensively studied class of compounds due to their biological activity (Bruggink, 2001; Morin & Gorman, 1982; Katritzky et al., 1996; Georg, 1993). The β-lactam class of drugs have revolutionized treatment in medicine (Coyne et al., 2007). In the late 1970's and early 1980's, the first class of the monocyclic β-lactam antibacterial agents were found in natural sources (Dobrowolski et al., 2004). All β-lactams are based on a β-lactam ring responsible for the antibacterial activity and variable side chains that account for the major differences in their chemical and pharmocological properties (Cha et al., 2006). We report herein the crystal structure of the title compound, (I).

In the title compound, (I), (Fig. 1) the four-membered β-lactam ring A (N4/C14-C16) is nearly planar, with a maximum deviation of 0.038 (4) Å for atom N1. The C14-C15 [1.581 (4) Å] and C15-C16 [1.523 (5) Å] bonds agree with those observed in similar structures (Bhaskaran et al., 2006; Kamala et al., 2008). The C14-C15-C16 [84.6 (2)°] bond angle is comparable to the corresponding value [87.0 (3)°)] in a related structure (Ülkü et al., 1997). The sum of the bond angles around atom N4 [355.6 (3)°] indicates sp2 hybridization. The planar rings A, B (C17-C22) and C (C24-C29) are oriented at dihedral angles of A/B = 30.0 (1)°, A/C = 76.3 (1)° and B/C = 50.2 (1)°. The planar indole moiety is oriented with respect to rings A, C and D (C30-C35) at dihedral angles of 30.9 (1)°, 73.0 (1)° and 70.7 (1)°, respectively. The pyrrolidine ring E (N2/C10-C13) adopts a twisted conformation, with asymmetry [ΔC2 (C11) = 0.011 (1), ΔCs (C13) = 0.085 (2)] (Nardelli, 1995) and puckering [q2 = 0.402 (3) Å and ϕ = -21.1 (4)°] (Cremer & Pople, 1975) parameters. Atom N2 deviates from the mean plane of (N2/C10-C12) by 0.553 (7) Å.

The intramolecular C-H···Cl and C-H···O hydrogen bonds (Table 1) result in the formation of two five- and one six-membered rings: F (O3/N3/C11/H11A/C12), G (Cl1/C11/H11/C30/C39) and H (O5/N4/C16/C17/C22/H22), respectively. In the crystal structure, intermolecular C-H···O and N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. A weak ππ interaction between (N1/C1-C3/C8) rings at x, y, z and 1 - x, 1 - y, 1 - z further stabilize the structure, with a centroid-centroid distance of 3.806 (2) Å.

Related literature top

For general background, see: Bruggink (2001); Morin & Gorman (1982); Katritzky et al. (1996); Georg (1993); Coyne et al. (2007); Dobrowolski et al. (2004); Cha et al. (2006). For related literature, see: Bhaskaran et al. (2006); Kamala et al. (2008); Ülkü et al. (1997). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1995).

Experimental top

For the preparation of the title compound, β-Lactam aldehyde (1.0 mol) was treated with tryptophan methylester hydrochloride (1.0 mol) in the presence of Et3N (2.5 mol) and anhydrous MgSO4 (2.0 g) in dry dichloromethane (10 ml) at room temperature for 12 h to give the imine. The imine was washed with water and dried over Na2SO4. The solvent was evaporated under vacuum. The imine (1.0 mol) was then strirred with silver (I) acetate and p-chloro nitrostyrene (1.0 mol) in the presence of Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) at room temperature for 12 h. The reaction mixture was filtered through a plug celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography on silica gel (100-200 mesh), with hexane-ethylacetate (7:3) as eluent to give the product. The compound was recrystallized from ethylacetate.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involed in hydrogen bondings have been omitted for clarity.
Methyl 3-(2-chlorophenyl)-2-(1H-indol-3-ylmethyl)-5-[1-(4-methoxyphenyl)-4-oxo- 3-phenylazetidin-2-yl]-4-nitropyrrolidine-2-carboxylate top
Crystal data top
C37H33ClN4O6Z = 2
Mr = 665.12F(000) = 696
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.399 (3) ÅCell parameters from 8315 reflections
b = 12.500 (3) Åθ = 2.5–31.6°
c = 14.211 (3) ŵ = 0.17 mm1
α = 93.766 (6)°T = 293 K
β = 99.962 (6)°Prism, colourless
γ = 114.066 (5)°0.30 × 0.20 × 0.16 mm
V = 1642.1 (7) Å3
Data collection top
Bruker KAPPA APEX2 CCD
diffractometer
5563 independent reflections
Radiation source: fine-focus sealed tube3770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.951, Tmax = 0.973k = 1414
25481 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.317H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
5563 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C37H33ClN4O6γ = 114.066 (5)°
Mr = 665.12V = 1642.1 (7) Å3
Triclinic, P1Z = 2
a = 10.399 (3) ÅMo Kα radiation
b = 12.500 (3) ŵ = 0.17 mm1
c = 14.211 (3) ÅT = 293 K
α = 93.766 (6)°0.30 × 0.20 × 0.16 mm
β = 99.962 (6)°
Data collection top
Bruker KAPPA APEX2 CCD
diffractometer
5563 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3770 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.973Rint = 0.057
25481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.317H-atom parameters constrained
S = 1.10Δρmax = 0.51 e Å3
5563 reflectionsΔρmin = 0.64 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27147 (16)0.62053 (13)0.03791 (11)0.0912 (5)
O10.4619 (3)0.3522 (3)0.1048 (2)0.0620 (8)
O20.4973 (3)0.5325 (3)0.16978 (19)0.0549 (7)
O30.1219 (3)0.2147 (3)0.0280 (2)0.0690 (9)
O40.0986 (3)0.1137 (3)0.02304 (19)0.0646 (8)
O50.1691 (3)0.1217 (3)0.3043 (3)0.0861 (12)
O60.4562 (3)0.1339 (3)0.4179 (2)0.0647 (9)
N10.5503 (4)0.3211 (3)0.4608 (2)0.0500 (8)
H1A0.56020.26740.49210.060*
N20.2433 (3)0.2437 (2)0.19400 (18)0.0340 (6)
H20.29430.20390.19760.041*
N30.0198 (3)0.1926 (3)0.0102 (2)0.0441 (8)
N40.0375 (3)0.0089 (2)0.2561 (2)0.0406 (7)
C10.4247 (4)0.3105 (3)0.4029 (2)0.0452 (9)
H10.33720.24350.39140.054*
C20.4455 (3)0.4115 (3)0.3646 (2)0.0344 (7)
C30.5947 (3)0.4900 (3)0.4004 (2)0.0355 (8)
C40.6834 (4)0.6067 (3)0.3897 (2)0.0464 (9)
H40.64650.64880.35040.056*
C50.8251 (4)0.6574 (4)0.4383 (3)0.0614 (11)
H50.88380.73470.43200.074*
C60.8836 (4)0.5963 (5)0.4969 (3)0.0669 (13)
H60.98020.63350.52890.080*
C70.8008 (4)0.4815 (5)0.5083 (3)0.0592 (12)
H70.84020.44000.54650.071*
C80.6570 (4)0.4301 (3)0.4609 (2)0.0411 (8)
C90.3323 (3)0.4348 (3)0.3002 (2)0.0340 (7)
H9A0.36650.51940.29990.041*
H9B0.24570.40790.32600.041*
C100.2943 (3)0.3712 (3)0.1948 (2)0.0310 (7)
C110.1669 (3)0.3868 (3)0.1245 (2)0.0335 (7)
H110.19570.40330.06300.040*
C120.0405 (3)0.2628 (3)0.1066 (2)0.0331 (7)
H120.04900.26780.11390.040*
C130.0886 (3)0.1980 (3)0.1857 (2)0.0315 (7)
H130.07320.22680.24680.038*
C140.0125 (3)0.0649 (3)0.1707 (2)0.0357 (7)
H140.03090.02990.11370.043*
C150.1531 (3)0.0061 (3)0.1733 (3)0.0458 (9)
H150.21010.05320.11590.055*
C160.1057 (4)0.0505 (3)0.2560 (3)0.0519 (10)
C170.1534 (3)0.0169 (3)0.2985 (2)0.0378 (8)
C180.2642 (3)0.0060 (3)0.2526 (2)0.0393 (8)
H180.26850.02560.19520.047*
C190.3685 (3)0.0420 (3)0.2917 (3)0.0430 (8)
H190.44340.03370.26100.052*
C200.3619 (4)0.0899 (3)0.3756 (3)0.0460 (9)
C210.2550 (4)0.0962 (4)0.4239 (3)0.0544 (10)
H210.25330.12500.48260.065*
C220.1513 (4)0.0600 (4)0.3857 (3)0.0509 (10)
H220.07960.06450.41850.061*
C230.5611 (5)0.1357 (5)0.3669 (4)0.0807 (16)
H23A0.61980.16830.40290.121*
H23B0.62080.05640.35850.121*
H23C0.51370.18380.30480.121*
C240.2264 (3)0.0835 (3)0.1965 (3)0.0418 (9)
C250.1948 (4)0.1455 (3)0.2876 (3)0.0461 (9)
H250.12760.13890.33650.055*
C260.2613 (4)0.2174 (4)0.3075 (3)0.0555 (10)
H260.23880.25820.36960.067*
C270.3605 (4)0.2289 (4)0.2362 (3)0.0605 (11)
H270.40520.27740.24950.073*
C280.3929 (4)0.1674 (4)0.1442 (3)0.0618 (12)
H280.45910.17520.09530.074*
C290.3278 (4)0.0951 (4)0.1250 (3)0.0537 (10)
H290.35170.05310.06320.064*
C300.1230 (3)0.4815 (3)0.1585 (2)0.0386 (8)
C310.0321 (4)0.4623 (4)0.2234 (3)0.0473 (9)
H310.00030.39060.24720.057*
C320.0116 (5)0.5464 (4)0.2530 (3)0.0664 (13)
H320.07310.53070.29570.080*
C330.0349 (7)0.6529 (5)0.2198 (4)0.0842 (18)
H330.00620.71010.24060.101*
C340.1243 (6)0.6751 (4)0.1557 (4)0.0775 (16)
H340.15640.74770.13330.093*
C350.1674 (4)0.5889 (3)0.1239 (3)0.0537 (10)
C360.4283 (3)0.4159 (3)0.1513 (2)0.0384 (8)
C370.6263 (4)0.5862 (5)0.1315 (3)0.0768 (15)
H37A0.66780.67080.14910.115*
H37B0.60140.56640.06230.115*
H37C0.69500.55700.15770.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1027 (10)0.0749 (10)0.1001 (11)0.0317 (8)0.0319 (8)0.0577 (8)
O10.0716 (17)0.076 (2)0.0706 (19)0.0510 (17)0.0408 (14)0.0291 (16)
O20.0497 (14)0.0547 (19)0.0521 (16)0.0091 (13)0.0214 (11)0.0149 (13)
O30.081 (2)0.083 (2)0.0504 (17)0.0411 (18)0.0232 (15)0.0032 (16)
O40.0702 (18)0.060 (2)0.0491 (16)0.0255 (16)0.0112 (13)0.0109 (14)
O50.0532 (16)0.084 (2)0.149 (3)0.0374 (16)0.0485 (19)0.078 (2)
O60.0597 (15)0.083 (2)0.079 (2)0.0484 (16)0.0245 (14)0.0487 (17)
N10.0702 (19)0.057 (2)0.0369 (16)0.0401 (18)0.0100 (14)0.0201 (15)
N20.0349 (12)0.0346 (16)0.0398 (15)0.0216 (12)0.0076 (10)0.0116 (12)
N30.0589 (18)0.0459 (19)0.0339 (16)0.0323 (16)0.0013 (13)0.0045 (14)
N40.0355 (13)0.0350 (17)0.0586 (18)0.0193 (12)0.0137 (12)0.0177 (14)
C10.0529 (18)0.047 (2)0.0362 (18)0.0206 (17)0.0092 (14)0.0129 (17)
C20.0423 (16)0.040 (2)0.0277 (16)0.0230 (15)0.0104 (12)0.0111 (14)
C30.0443 (16)0.044 (2)0.0240 (15)0.0256 (15)0.0068 (12)0.0030 (14)
C40.0500 (18)0.048 (2)0.0393 (19)0.0186 (17)0.0110 (15)0.0044 (17)
C50.049 (2)0.058 (3)0.061 (3)0.0101 (19)0.0095 (17)0.003 (2)
C60.0400 (18)0.100 (4)0.050 (2)0.025 (2)0.0003 (16)0.003 (2)
C70.058 (2)0.098 (4)0.037 (2)0.053 (3)0.0016 (16)0.006 (2)
C80.0518 (18)0.050 (2)0.0278 (16)0.0287 (18)0.0060 (13)0.0033 (15)
C90.0360 (14)0.0389 (19)0.0332 (17)0.0213 (14)0.0092 (12)0.0071 (14)
C100.0329 (14)0.0348 (19)0.0317 (16)0.0195 (13)0.0082 (11)0.0103 (14)
C110.0425 (15)0.0373 (19)0.0281 (16)0.0229 (14)0.0091 (12)0.0115 (14)
C120.0384 (15)0.0376 (19)0.0307 (16)0.0239 (14)0.0069 (12)0.0046 (14)
C130.0357 (14)0.0324 (18)0.0315 (16)0.0196 (13)0.0070 (11)0.0055 (13)
C140.0412 (15)0.0311 (18)0.0406 (18)0.0221 (14)0.0070 (12)0.0050 (14)
C150.0375 (16)0.039 (2)0.064 (2)0.0211 (15)0.0078 (14)0.0087 (17)
C160.0438 (18)0.042 (2)0.080 (3)0.0235 (17)0.0197 (18)0.025 (2)
C170.0420 (16)0.0296 (18)0.0468 (19)0.0188 (14)0.0109 (14)0.0120 (15)
C180.0402 (15)0.037 (2)0.0451 (19)0.0187 (15)0.0109 (13)0.0159 (16)
C190.0431 (17)0.043 (2)0.051 (2)0.0214 (16)0.0180 (14)0.0179 (17)
C200.0457 (17)0.044 (2)0.054 (2)0.0232 (16)0.0111 (15)0.0234 (18)
C210.060 (2)0.070 (3)0.049 (2)0.037 (2)0.0207 (17)0.033 (2)
C220.0537 (19)0.061 (3)0.052 (2)0.0312 (19)0.0237 (16)0.0249 (19)
C230.070 (3)0.103 (4)0.116 (4)0.066 (3)0.043 (3)0.063 (3)
C240.0356 (15)0.038 (2)0.057 (2)0.0193 (14)0.0119 (14)0.0158 (17)
C250.0439 (17)0.047 (2)0.050 (2)0.0210 (16)0.0104 (15)0.0155 (18)
C260.057 (2)0.062 (3)0.060 (2)0.032 (2)0.0248 (18)0.017 (2)
C270.059 (2)0.064 (3)0.085 (3)0.044 (2)0.032 (2)0.027 (2)
C280.057 (2)0.080 (3)0.071 (3)0.047 (2)0.0166 (19)0.031 (2)
C290.0485 (18)0.064 (3)0.056 (2)0.0327 (19)0.0065 (16)0.013 (2)
C300.0435 (16)0.041 (2)0.0355 (17)0.0263 (15)0.0031 (13)0.0077 (15)
C310.057 (2)0.052 (2)0.045 (2)0.0381 (19)0.0046 (15)0.0036 (17)
C320.074 (3)0.080 (3)0.059 (3)0.056 (3)0.004 (2)0.008 (2)
C330.106 (4)0.064 (3)0.090 (4)0.067 (3)0.025 (3)0.019 (3)
C340.093 (3)0.041 (3)0.093 (4)0.039 (3)0.020 (3)0.007 (2)
C350.057 (2)0.037 (2)0.062 (2)0.0219 (17)0.0066 (17)0.0126 (18)
C360.0404 (16)0.053 (2)0.0320 (17)0.0278 (17)0.0102 (13)0.0177 (16)
C370.052 (2)0.097 (4)0.061 (3)0.004 (2)0.024 (2)0.027 (3)
Geometric parameters (Å, º) top
N1—H1A0.8600C17—C181.384 (5)
N2—H20.8600C17—N41.418 (4)
N3—O41.208 (4)C18—C191.382 (4)
N3—O31.215 (4)C18—H180.9300
C1—C21.358 (5)C19—C201.368 (5)
C1—N11.369 (4)C19—H190.9300
C1—H10.9300C20—O61.380 (4)
C2—C31.431 (5)C20—C211.383 (5)
C2—C91.501 (4)C21—C221.375 (5)
C3—C41.408 (5)C21—H210.9300
C3—C81.417 (4)C22—H220.9300
C4—C51.371 (5)C23—O61.417 (5)
C4—H40.9300C23—H23A0.9600
C5—C61.390 (7)C23—H23B0.9600
C5—H50.9300C23—H23C0.9600
C6—C71.377 (7)C24—C251.378 (5)
C6—H60.9300C24—C291.392 (4)
C7—C81.383 (5)C25—C261.380 (5)
C7—H70.9300C25—H250.9300
C8—N11.362 (5)C26—C271.376 (5)
C9—C101.553 (4)C26—H260.9300
C9—H9A0.9700C27—C281.384 (6)
C9—H9B0.9700C27—H270.9300
C10—N21.459 (4)C28—C291.373 (5)
C10—C361.531 (4)C28—H280.9300
C10—C111.603 (3)C29—H290.9300
C11—C301.511 (4)C30—C351.385 (5)
C11—C121.538 (5)C30—C311.395 (5)
C11—H110.9800C31—C321.374 (5)
C12—N31.511 (4)C31—H310.9300
C12—C131.558 (4)C32—C331.365 (8)
C12—H120.9800C32—H320.9300
C13—N21.451 (4)C33—C341.374 (8)
C13—C141.503 (4)C33—H330.9300
C13—H130.9800C34—C351.402 (6)
C14—N41.478 (4)C34—H340.9300
C14—C151.581 (4)C35—Cl11.730 (5)
C14—H140.9800C36—O11.197 (4)
C15—C241.507 (4)C36—O21.319 (4)
C15—C161.523 (5)C37—O21.454 (4)
C15—H150.9800C37—H37A0.9600
C16—O51.206 (5)C37—H37B0.9600
C16—N41.365 (4)C37—H37C0.9600
C17—C221.383 (5)
C36—O2—C37116.4 (3)C16—C15—C1484.6 (2)
C20—O6—C23116.9 (3)C24—C15—H15111.2
C8—N1—C1109.2 (3)C16—C15—H15111.2
C8—N1—H1A125.4C14—C15—H15111.2
C1—N1—H1A125.4O5—C16—N4132.5 (3)
C13—N2—C10105.6 (2)O5—C16—C15133.9 (3)
C13—N2—H2127.2N4—C16—C1593.6 (3)
C10—N2—H2127.2C22—C17—C18119.3 (3)
O4—N3—O3123.6 (3)C22—C17—N4118.8 (3)
O4—N3—C12116.9 (3)C18—C17—N4121.8 (3)
O3—N3—C12119.5 (3)C19—C18—C17120.2 (3)
C16—N4—C17128.4 (3)C19—C18—H18119.9
C16—N4—C1494.5 (3)C17—C18—H18119.9
C17—N4—C14132.7 (3)C20—C19—C18120.1 (3)
C2—C1—N1110.6 (3)C20—C19—H19119.9
C2—C1—H1124.7C18—C19—H19119.9
N1—C1—H1124.7C19—C20—O6124.7 (3)
C1—C2—C3106.0 (3)C19—C20—C21119.7 (3)
C1—C2—C9126.1 (3)O6—C20—C21115.6 (3)
C3—C2—C9127.9 (3)C22—C21—C20120.4 (3)
C4—C3—C8118.1 (3)C22—C21—H21119.8
C4—C3—C2134.6 (3)C20—C21—H21119.8
C8—C3—C2107.3 (3)C21—C22—C17120.0 (3)
C5—C4—C3118.9 (4)C21—C22—H22120.0
C5—C4—H4120.6C17—C22—H22120.0
C3—C4—H4120.6O6—C23—H23A109.5
C4—C5—C6121.8 (4)O6—C23—H23B109.5
C4—C5—H5119.1H23A—C23—H23B109.5
C6—C5—H5119.1O6—C23—H23C109.5
C7—C6—C5121.1 (4)H23A—C23—H23C109.5
C7—C6—H6119.5H23B—C23—H23C109.5
C5—C6—H6119.5C25—C24—C29118.1 (3)
C6—C7—C8117.7 (3)C25—C24—C15121.7 (3)
C6—C7—H7121.2C29—C24—C15120.3 (3)
C8—C7—H7121.2C24—C25—C26121.1 (3)
N1—C8—C7130.5 (3)C24—C25—H25119.4
N1—C8—C3107.0 (3)C26—C25—H25119.4
C7—C8—C3122.5 (4)C27—C26—C25120.4 (4)
C2—C9—C10112.3 (2)C27—C26—H26119.8
C2—C9—H9A109.1C25—C26—H26119.8
C10—C9—H9A109.1C26—C27—C28119.1 (3)
C2—C9—H9B109.1C26—C27—H27120.4
C10—C9—H9B109.1C28—C27—H27120.4
H9A—C9—H9B107.9C29—C28—C27120.3 (3)
N2—C10—C36108.6 (2)C29—C28—H28119.8
N2—C10—C9109.8 (2)C27—C28—H28119.8
C36—C10—C9110.0 (2)C28—C29—C24121.0 (4)
N2—C10—C11105.2 (2)C28—C29—H29119.5
C36—C10—C11108.7 (2)C24—C29—H29119.5
C9—C10—C11114.2 (2)C35—C30—C31117.5 (3)
C30—C11—C12111.5 (2)C35—C30—C11121.3 (3)
C30—C11—C10117.8 (2)C31—C30—C11121.2 (3)
C12—C11—C10103.5 (2)C32—C31—C30121.9 (4)
C30—C11—H11107.8C32—C31—H31119.1
C12—C11—H11107.8C30—C31—H31119.1
C10—C11—H11107.8C33—C32—C31120.2 (5)
N3—C12—C11113.1 (3)C33—C32—H32119.9
N3—C12—C13106.7 (2)C31—C32—H32119.9
C11—C12—C13103.8 (2)C32—C33—C34119.7 (4)
N3—C12—H12111.0C32—C33—H33120.2
C11—C12—H12111.0C34—C33—H33120.2
C13—C12—H12111.0C33—C34—C35120.4 (4)
N2—C13—C14113.7 (2)C33—C34—H34119.8
N2—C13—C12103.5 (2)C35—C34—H34119.8
C14—C13—C12117.3 (2)C30—C35—C34120.3 (4)
N2—C13—H13107.3C30—C35—Cl1122.1 (3)
C14—C13—H13107.3C34—C35—Cl1117.5 (4)
C12—C13—H13107.3O1—C36—O2125.4 (3)
N4—C14—C13115.3 (3)O1—C36—C10123.6 (3)
N4—C14—C1587.1 (2)O2—C36—C10111.0 (3)
C13—C14—C15117.8 (2)O2—C37—H37A109.5
N4—C14—H14111.5O2—C37—H37B109.5
C13—C14—H14111.5H37A—C37—H37B109.5
C15—C14—H14111.5O2—C37—H37C109.5
C24—C15—C16116.4 (3)H37A—C37—H37C109.5
C24—C15—C14119.7 (3)H37B—C37—H37C109.5
N1—C1—C2—C30.6 (4)C16—C15—C24—C29150.9 (3)
N1—C1—C2—C9178.0 (3)C14—C15—C24—C29109.9 (4)
C1—C2—C3—C4178.8 (3)C29—C24—C25—C260.2 (5)
C9—C2—C3—C40.3 (6)C15—C24—C25—C26179.1 (3)
C1—C2—C3—C80.5 (4)C24—C25—C26—C270.3 (6)
C9—C2—C3—C8178.1 (3)C25—C26—C27—C280.1 (6)
C8—C3—C4—C50.3 (5)C26—C27—C28—C290.6 (6)
C2—C3—C4—C5177.9 (4)C27—C28—C29—C241.1 (6)
C3—C4—C5—C60.6 (6)C25—C24—C29—C280.9 (6)
C4—C5—C6—C70.1 (7)C15—C24—C29—C28178.4 (4)
C5—C6—C7—C81.2 (6)C12—C11—C30—C35138.3 (3)
C6—C7—C8—N1178.1 (4)C10—C11—C30—C35102.2 (3)
C6—C7—C8—C31.5 (5)C12—C11—C30—C3139.4 (4)
C4—C3—C8—N1178.9 (3)C10—C11—C30—C3180.1 (4)
C2—C3—C8—N10.2 (3)C35—C30—C31—C320.5 (5)
C4—C3—C8—C70.7 (5)C11—C30—C31—C32178.3 (3)
C2—C3—C8—C7179.4 (3)C30—C31—C32—C330.7 (6)
C1—C2—C9—C1076.9 (4)C31—C32—C33—C340.8 (7)
C3—C2—C9—C10104.8 (4)C32—C33—C34—C350.3 (7)
C2—C9—C10—N258.5 (3)C31—C30—C35—C341.6 (5)
C2—C9—C10—C3661.0 (3)C11—C30—C35—C34179.4 (3)
C2—C9—C10—C11176.5 (2)C31—C30—C35—Cl1176.2 (2)
N2—C10—C11—C30134.8 (3)C11—C30—C35—Cl11.6 (5)
C36—C10—C11—C30109.0 (3)C33—C34—C35—C301.5 (6)
C9—C10—C11—C3014.2 (4)C33—C34—C35—Cl1176.4 (4)
N2—C10—C11—C1211.2 (3)N2—C10—C36—O116.0 (4)
C36—C10—C11—C12127.4 (3)C9—C10—C36—O1136.2 (3)
C9—C10—C11—C12109.4 (3)C11—C10—C36—O198.0 (3)
C30—C11—C12—N3131.4 (2)N2—C10—C36—O2165.9 (2)
C10—C11—C12—N3101.0 (2)C9—C10—C36—O245.6 (3)
C30—C11—C12—C13113.4 (3)C11—C10—C36—O280.1 (3)
C10—C11—C12—C1314.3 (3)C7—C8—N1—C1179.7 (4)
N3—C12—C13—N284.1 (3)C3—C8—N1—C10.1 (4)
C11—C12—C13—N235.6 (3)C2—C1—N1—C80.4 (4)
N3—C12—C13—C1442.0 (3)C14—C13—N2—C10172.5 (2)
C11—C12—C13—C14161.7 (2)C12—C13—N2—C1044.1 (3)
N2—C13—C14—N472.2 (3)C36—C10—N2—C13150.8 (2)
C12—C13—C14—N4166.9 (2)C9—C10—N2—C1388.8 (2)
N2—C13—C14—C15172.8 (3)C11—C10—N2—C1334.6 (3)
C12—C13—C14—C1566.3 (4)C11—C12—N3—O4157.2 (3)
N4—C14—C15—C24113.5 (3)C13—C12—N3—O489.3 (3)
C13—C14—C15—C243.7 (5)C11—C12—N3—O325.3 (4)
N4—C14—C15—C163.9 (3)C13—C12—N3—O388.2 (3)
C13—C14—C15—C16121.1 (3)O5—C16—N4—C1716.9 (7)
C24—C15—C16—O563.8 (6)C15—C16—N4—C17163.0 (3)
C14—C15—C16—O5175.6 (5)O5—C16—N4—C14175.3 (5)
C24—C15—C16—N4116.3 (3)C15—C16—N4—C144.5 (3)
C14—C15—C16—N44.2 (3)C22—C17—N4—C1636.5 (5)
C22—C17—C18—C192.4 (5)C18—C17—N4—C16140.0 (4)
N4—C17—C18—C19174.1 (3)C22—C17—N4—C14173.4 (3)
C17—C18—C19—C200.8 (6)C18—C17—N4—C1410.1 (6)
C18—C19—C20—O6176.6 (4)C13—C14—N4—C16123.8 (3)
C18—C19—C20—C213.5 (6)C15—C14—N4—C164.4 (3)
C19—C20—C21—C223.2 (6)C13—C14—N4—C1779.3 (4)
O6—C20—C21—C22176.9 (4)C15—C14—N4—C17161.3 (4)
C20—C21—C22—C170.1 (7)O1—C36—O2—C371.3 (5)
C18—C17—C22—C212.7 (6)C10—C36—O2—C37179.4 (3)
N4—C17—C22—C21173.9 (4)C19—C20—O6—C234.1 (6)
C16—C15—C24—C2529.9 (5)C21—C20—O6—C23176.0 (4)
C14—C15—C24—C2569.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl10.982.573.095 (4)114
C11—H11···O30.982.372.786 (4)105
C22—H22···O50.932.593.080 (6)113
C14—H14···O4i0.982.533.443 (5)154
C34—H34···O4ii0.932.593.414 (6)148
N1—H1A···O6iii0.862.142.982 (5)167
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC37H33ClN4O6
Mr665.12
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.399 (3), 12.500 (3), 14.211 (3)
α, β, γ (°)93.766 (6), 99.962 (6), 114.066 (5)
V3)1642.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker KAPPA APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.951, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
25481, 5563, 3770
Rint0.057
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.317, 1.10
No. of reflections5563
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.64

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl10.982.573.095 (4)114
C11—H11···O30.982.372.786 (4)105
C22—H22···O50.932.593.080 (6)113
C14—H14···O4i0.982.533.443 (5)154
C34—H34···O4ii0.932.593.414 (6)148
N1—H1A···O6iii0.862.142.982 (5)167
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management, India, for their support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBhaskaran, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci. 22, x57–x58.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruggink, A. (2001). Synthesis of β-Lactam Antibiotics, Chemistry, Biocatalysis and Process Integration, edited by A. Bruggink. Dordrecht: Kluwer.  Google Scholar
First citationBruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCha, J. M., Yang, S. & Carlson, K. H. (2006). J. Chromatogr. A, 1115, 46–57.   Web of Science CrossRef PubMed CAS Google Scholar
First citationCoyne, A. G., Muller-Bunz, H. & Guiry, P. J. (2007). Tetrahedron Asymmetry, 18, 199–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDobrowolski, J. C., Sadlej, J. & Mazurek, A. P. (2004). J. Mol. Struct. THEOCHEM, 684, 181–186.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGeorg, G. I. (1993). The Organic Chemistry of β-Lactams, edited by G. I. Georg. New York: VCH.  Google Scholar
First citationKamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, Vol. 1b, chs. 1.18–1.20. New York: Elsevier.  Google Scholar
First citationMorin, M. B. & Gorman, M. (1982). Chemistry and Biology of β-Lactam Antibiotics, edited by M. B. Morin & M. Gorman, pp. 1– 3. New York: Academic Press.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜlkü, D., Ercan, F. & Güner, V. (1997). Acta Cryst. C53, 1945–1947.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1070-o1071
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds