organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Bromo-4,5-di­meth­oxy­phen­yl)propiono­nitrile

aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 6 May 2008; accepted 8 May 2008; online 14 May 2008)

In the mol­ecule of the title compound, C11H12BrNO2, a weak intra­molecular C—H⋯Br hydrogen bond results in the formation of a five-membered ring, which adopts an envelope conformation with the H atom displaced by 0.486 Å from the plane of the other ring atoms. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Kametani et al. (1973[Kametani, T., Ogasawara, K. & Takahashi, T. (1973). Tetrahedron, 29, 73-76.]); Paull & Cheng (1972[Paull, K. D. & Cheng, C. C. (1972). J. Org. Chem. 37, 3374-3376.]); Lerestif et al. (2005[Lerestif, J. M., Isaac, G. B., Lecouve, J. P. & Brigot, D. (2005). PCT Int. Appl. EP 05 290 384.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12BrNO2

  • Mr = 270.13

  • Tetragonal, P 42 b c

  • a = 17.552 (3) Å

  • c = 7.4870 (15) Å

  • V = 2306.5 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 294 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.416, Tmax = 0.718

  • 4281 measured reflections

  • 1128 independent reflections

  • 657 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.113

  • S = 0.99

  • 1128 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with no Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.97 2.32 3.193 (10) 150
C3—H3B⋯Br 0.97 2.76 3.195 (9) 108
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

2-Bromo-4,5-dimethoxyhydrocinnamonitrile is the precursor of 1-cyano-4,5-di- methoxybenzocyclobutene, which is a key intermediate of ivabradine (Lerestif et al., 2005), xylopinine (Kametani et al., 1973) and 4-substituted 3a,4,5,9 b-terahydrobenz[e]isoindolinea (Paull & Cheng, 1972). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), ring A (C4-C9) is, of course, planar. Br, O1, O2, C3 and C10 atoms lie in the ring plane. A weak intramolecular C-H···Br [C3-H3B = 0.97, H3B···Br = 2.76, C3···Br = 3.195 (9) Å and C3-H3B···Br = 108°] hydrogen bond results in the formation of a five-membered ring B (C3-C5/Br/H3B), which adopts envelope conformation with hydrogen atom displaced by -0.486 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O [C2-H2A = 0.97, H2A···O1 = 2.32, C2···O1 = 3.193 (8) Å and C2-H2A···O1 = 150°] hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Kametani et al. (1973); Paull & Cheng (1972); Lerestif et al. (2005).

Experimental top

For the preparation of the title compound, beta-(2-bromo-4,5-dimethoxypenyl) -alpha-cyanoproponic acid (16 mmol) was dissolved in dimethylacetamide (10 ml), the mixture was heated at 443 K and evolution of the calculated amount of CO2 ceased after 30 min. The mixture was poured into water and set aside overnight. Crystals were separated, collected and washed with water and hexane. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
3-(2-Bromo-4,5-dimethoxyphenyl)propiononitrile top
Crystal data top
C11H12BrNO2Dx = 1.556 Mg m3
Mr = 270.13Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42bcCell parameters from 25 reflections
Hall symbol: P 4c -2abθ = 10–13°
a = 17.552 (3) ŵ = 3.54 mm1
c = 7.4870 (15) ÅT = 294 K
V = 2306.5 (7) Å3Block, colorless
Z = 80.30 × 0.10 × 0.10 mm
F(000) = 1088
Data collection top
Enraf–Nonius CAD-4
diffractometer
657 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.2°, θmin = 1.6°
ω/2θ scansh = 2121
Absorption correction: ψ scan
(North et al., 1968)
k = 210
Tmin = 0.416, Tmax = 0.718l = 08
4281 measured reflections3 standard reflections every 120 min
1128 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.36 e Å3
1128 reflectionsΔρmin = 0.40 e Å3
137 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0026 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with no Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (3)
Crystal data top
C11H12BrNO2Z = 8
Mr = 270.13Mo Kα radiation
Tetragonal, P42bcµ = 3.54 mm1
a = 17.552 (3) ÅT = 294 K
c = 7.4870 (15) Å0.30 × 0.10 × 0.10 mm
V = 2306.5 (7) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
657 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.416, Tmax = 0.7183 standard reflections every 120 min
4281 measured reflections intensity decay: none
1128 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.36 e Å3
S = 0.99Δρmin = 0.40 e Å3
1128 reflectionsAbsolute structure: Flack (1983), with no Friedel pairs
137 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.95483 (5)0.91044 (5)0.9098 (3)0.0796 (5)
N0.6404 (5)0.9114 (5)0.6468 (17)0.083 (4)
O10.7337 (3)0.6500 (3)0.8860 (13)0.051 (2)
O20.8737 (4)0.6253 (3)0.8147 (10)0.055 (2)
C10.6900 (6)0.9379 (5)0.7195 (18)0.057 (3)
C20.7527 (6)0.9707 (5)0.8211 (15)0.060 (4)
H2A0.73831.02160.85850.073*
H2B0.79650.97540.74290.073*
C30.7763 (5)0.9255 (5)0.9855 (13)0.050 (3)
H3A0.73290.92121.06490.060*
H3B0.81580.95351.04820.060*
C40.8058 (4)0.8459 (4)0.9433 (19)0.040 (3)
C50.8811 (4)0.8304 (4)0.906 (2)0.043 (2)
C60.9068 (5)0.7583 (5)0.8663 (14)0.053 (5)
H6A0.95850.75010.84620.064*
C70.8568 (5)0.6988 (4)0.8560 (11)0.034 (3)
C80.7797 (4)0.7129 (4)0.899 (2)0.038 (2)
C90.7556 (4)0.7846 (4)0.939 (2)0.040 (3)
H9A0.70430.79290.96390.047*
C100.6556 (4)0.6598 (4)0.932 (3)0.056 (3)
H10A0.62970.61170.92250.084*
H10B0.63260.69570.85160.084*
H10C0.65190.67841.05200.084*
C110.9502 (5)0.6090 (5)0.758 (2)0.077 (4)
H11A0.95490.55560.73240.116*
H11B0.98520.62280.85070.116*
H11C0.96150.63780.65190.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0517 (6)0.0477 (6)0.1394 (12)0.0149 (4)0.0013 (13)0.0086 (14)
N0.084 (7)0.070 (6)0.095 (10)0.022 (5)0.025 (8)0.018 (7)
O10.039 (3)0.036 (3)0.078 (7)0.003 (2)0.006 (5)0.015 (5)
O20.044 (4)0.031 (4)0.090 (6)0.010 (3)0.009 (4)0.000 (4)
C10.067 (8)0.041 (6)0.062 (10)0.013 (6)0.002 (7)0.009 (6)
C20.064 (7)0.032 (6)0.085 (10)0.008 (5)0.007 (7)0.010 (6)
C30.042 (6)0.055 (6)0.052 (9)0.002 (5)0.009 (5)0.012 (6)
C40.041 (5)0.035 (4)0.045 (8)0.001 (3)0.002 (7)0.006 (7)
C50.042 (5)0.038 (5)0.047 (7)0.011 (4)0.006 (9)0.007 (9)
C60.033 (4)0.042 (5)0.085 (14)0.001 (4)0.003 (6)0.003 (6)
C70.041 (5)0.031 (4)0.030 (8)0.005 (4)0.008 (4)0.002 (4)
C80.039 (4)0.026 (4)0.048 (7)0.007 (3)0.013 (8)0.001 (7)
C90.037 (4)0.038 (4)0.044 (7)0.001 (4)0.005 (7)0.002 (7)
C100.036 (5)0.053 (5)0.079 (8)0.013 (4)0.001 (9)0.008 (10)
C110.054 (6)0.049 (6)0.128 (13)0.009 (5)0.000 (8)0.013 (8)
Geometric parameters (Å, º) top
Br—C51.911 (7)C4—C91.391 (10)
N—C11.128 (13)C5—C61.376 (11)
O1—C81.371 (9)C6—C71.367 (11)
O1—C101.422 (9)C6—H6A0.9300
O2—C71.358 (9)C7—C81.414 (10)
O2—C111.438 (10)C8—C91.360 (10)
C1—C21.456 (14)C9—H9A0.9300
C2—C31.521 (13)C10—H10A0.9600
C2—H2A0.9700C10—H10B0.9600
C2—H2B0.9700C10—H10C0.9600
C3—C41.524 (11)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—C51.376 (11)
C8—O1—C10116.9 (6)C5—C6—H6A119.9
C7—O2—C11117.4 (7)O2—C7—C6126.7 (8)
N—C1—C2177.3 (14)O2—C7—C8115.3 (7)
C1—C2—C3115.0 (9)C6—C7—C8117.9 (8)
C1—C2—H2A108.5C9—C8—O1125.3 (7)
C3—C2—H2A108.5C9—C8—C7120.7 (7)
C1—C2—H2B108.5O1—C8—C7113.9 (7)
C3—C2—H2B108.5C8—C9—C4121.5 (8)
H2A—C2—H2B107.5C8—C9—H9A119.2
C2—C3—C4113.7 (8)C4—C9—H9A119.2
C2—C3—H3A108.8O1—C10—H10A109.5
C4—C3—H3A108.8O1—C10—H10B109.5
C2—C3—H3B108.8H10A—C10—H10B109.5
C4—C3—H3B108.8O1—C10—H10C109.5
H3A—C3—H3B107.7H10A—C10—H10C109.5
C5—C4—C9116.8 (7)H10B—C10—H10C109.5
C5—C4—C3123.3 (7)O2—C11—H11A109.5
C9—C4—C3119.9 (8)O2—C11—H11B109.5
C4—C5—C6122.7 (7)H11A—C11—H11B109.5
C4—C5—Br120.1 (6)O2—C11—H11C109.5
C6—C5—Br117.1 (6)H11A—C11—H11C109.5
C7—C6—C5120.2 (8)H11B—C11—H11C109.5
C7—C6—H6A119.9
C1—C2—C3—C462.4 (12)C5—C6—C7—C84.2 (18)
C2—C3—C4—C588.6 (16)C10—O1—C8—C96 (3)
C2—C3—C4—C990.8 (16)C10—O1—C8—C7178.6 (13)
C9—C4—C5—C60 (2)O2—C7—C8—C9178.5 (13)
C3—C4—C5—C6179.2 (13)C6—C7—C8—C94 (2)
C9—C4—C5—Br179.7 (11)O2—C7—C8—O12.4 (17)
C3—C4—C5—Br1 (2)C6—C7—C8—O1179.8 (11)
C4—C5—C6—C72 (2)O1—C8—C9—C4177.5 (13)
Br—C5—C6—C7177.9 (9)C7—C8—C9—C42 (3)
C11—O2—C7—C67.0 (15)C5—C4—C9—C80 (3)
C11—O2—C7—C8175.9 (12)C3—C4—C9—C8179.1 (13)
C5—C6—C7—O2178.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.323.193 (10)150
C3—H3B···Br0.972.763.195 (9)108
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC11H12BrNO2
Mr270.13
Crystal system, space groupTetragonal, P42bc
Temperature (K)294
a, c (Å)17.552 (3), 7.4870 (15)
V3)2306.5 (7)
Z8
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.416, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
4281, 1128, 657
Rint0.047
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.113, 0.99
No. of reflections1128
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.40
Absolute structureFlack (1983), with no Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.323.193 (10)150
C3—H3B···Br0.972.763.195 (9)108
Symmetry code: (i) x+3/2, y+1/2, z.
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKametani, T., Ogasawara, K. & Takahashi, T. (1973). Tetrahedron, 29, 73–76.  CrossRef CAS Web of Science Google Scholar
First citationLerestif, J. M., Isaac, G. B., Lecouve, J. P. & Brigot, D. (2005). PCT Int. Appl. EP 05 290 384.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPaull, K. D. & Cheng, C. C. (1972). J. Org. Chem. 37, 3374–3376.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds